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To perform a good swing on the rings in gymnastics, it is said to be important to keep the 
center-of-mass (COM) almost along the vertical line through the cable attachment point on 
the ring frame. However, the theoretical background of this empirical knowledge is not clear. 
In this study, we address a question whether a gymnast can always affect the horizontal 
motion of COM by the input of joint torque during swinging. Using a three-segment model 
in the sagittal plane, composed of a cables-rings segment, an arms segment, and a head- 
neck-torso-legs segment (Sprigings et al., 1998), we analyse the relation between the 
shoulder torque and the COM motion. The results show that there exist a variety of 
configurations where the shoulder torque cannot affect the horizontal motion of COM. 
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INTRODUCTION: Controling COM is important in a variety of human motions. In this study, 
we focus on the rings event in men's gymnastics (Sprigings et al., 1998; Brewin et al., 2000; 
Yeadon & Brewin, 2003). To perform a good swing on the rings from the hanging position, it 
is said to be important to keep COM almost along the vertical line through the cable attachment 
point on the ring frame (referred to as the origin). This indicates that the gymnast should control 
the horizontal position of COM during swinging. However, the theoretical background of this 
empirical knowledge is not clear. in this study, using a three-segment model of the rlngs motion 
(Sprigings et al., 1998) for simplicity, we address a question whether the gymnast can always 
affect the motion of COM of the Wole system by exerting joint torque during swinging. 

METHODS: The swing on the rlngs in the sagittal plane was modeled by the three-segment 
model (Sprigings et al., 1998) composed of a cables-rings segment, an arms segment, and a 
head-neck-torso-legs segment as shown in Figure 1. The equations of motion of the model is 
described as 

where q = [ql, qz, q3IT is the vector of the joint angles, r, is the torque of the shoulder joint, M 
is the inertia matrix (3 x 3), C is the vector of Coriolis force and centrifugal force (3 x 1). G is 
the vector of gravitational force (3 x I), and B = [O, 0, 1IT is the transformation matrix. (-)T 
denotes the transpose of a matrix. The details of the terms are omitted because of the page 
limitation. The physical parameters of the model were obtained from Sprigings et al. (1998). It 
is worth noting that a gymnast must control three joints by using only one input toque. 
The horizontal position of COM of the whole system is 

where y,, y,, y, are constants determined by the physical parameters. The condition of COM 
on the vertical line through the origin is described as x, = 0. When x, = 0,  ql can be 
determined by q2 and (7, as 
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Figure 1: Three-segment model of the swing on the rings in the sagittal plane 

To analyse whether the shoulder torque can affect the horizontal motion of COM, we derived 
the equation of motion with respect to x, as follows (Khatib, 1990). The horizontal velocity of 
COM ig is determined by the angular velocity as 

d$ = J(q14 (4) 

where j ( q )  = ilx,/aq is the Jacobian matrix (1 x 3). Taking the derivative of (4) yields, 

xg = J ( ~ M  + j(q, q)q 

By substituting (1) into (5), we obtain 

&q)2g + TT(s>(c(s, 41 + Gh)) - R(q)f(q, 414 = J T ( 4 ) B ~ 3  
which can be regarded as the equation of motion with respect to xg, where 

The right-hand side of (6) shows the effect of the shoulder toque T~ on the motion equation 
of x,. We can see that, when l T ( q ) ~  = 0, the shoulder toque t3 cannot affect the horizontal 
motion equation of COM. Moreover, since the range of q1 is narrow in rings motion, the 
condition J T ( q ) ~  = 0 can be simplified as](q)M'l(q)B = 0. We call the configuration q = 
[ql,  q2, q3IT that satisfies J ( q ) M - l ( q ) B  = 0 a singular point. We calculated the singular points 
under xg = 0. 

RESULTS & DISCUSSION: Figure 2 shows the singular points calculated numerically by 
solving j(q)M'l(q)B = 0 under x, = 0. Every point (q,, q3) in Figure 2 corresponds to the 
configuration satisfying x, = 0. The other angle ql is determined by (3). The points on the solid 
curves in Figure 2 are the configuration satisfying](q)M-l(q)B = 0, i.e. the singular point, 
where the shoulder torque cannot affect the horizontal motion of COM. Figure 3 shows the 
stick figures corresponding to these singular points. The results represent that there exist a 
variety of singular points in the rings motion. In Figure 2, it can be seen that there is no singular 
point in the configuration where q2 is close to zero, and the cables and arms align on a straight 
line. This means that, when amplitudes of swings are small, the singular point would be 
avoided by keeping such configurations during swinging. However, when amplitudes of swings 
are large, for example, the motion ranging from the hanging position (q,  = 0 deg) to the 
handstand position (q2 = 180 deg), it can be seen that it is unavoidable to intersect with the 
singular point in Figure 2. 



Figure 2: The set of the singular points that satisfies](q)~-l(q)~ = 0 under x, = 0. 

Flgure 3: The stick figures corresponding to the singular points shown in Figure 2. 
In these configurations, the shoulder torque cannot affect the horizontal motion of 
COM. The configurations enclosed by the red rectangle are similar to the 
configuration of a gymnast shown in Figure 4. 



Figure 4: Swing on the rings by a gymnast. The configuration enclosed by the red 
rectangle is similar to the configurations shown in Figure 3. 

Figure 4 shows the configurations of a gymnast during swinging. It appears that the 
configurations represented in the right pictures (marked by the red rectangle) are similar to 
those in Figure 3 (marked by the red rectangle). This would suggest that the gymnast takes 
the configurations near the singular points during swinging. However, it can be also observed 
that the gymnast adducts the shoulder and flexes the elbow near the singular points in Figure 
4. This implies that the arm motion outside the sagittal plane might be employed to avoid the 
singular points, in order to control the horizontal motion of COM. 

CONCLUSION: The purpose of this study was to address a question whether a gymnast can 
always affect the horizontal motion of COM by the input of joint toque during swinging on the 
rings. Using a three-segment model in the sagittal plane, the relation between the shoulder 
toque and the COM motion was analysed. The results showed that there exist a variety of 
configurations (singular points) where the shoulder torque cannot affect the horizontal motion 
of COM. Thus, it is not always easy to keep COM along the vertical line through the origin, as 
long as the motion is limited to the three-segment model in the sagittal plane. In order to avoid 
the singular points, it was suggested that the cables and the arms should be aligned almost in 
a straight line for swings with small amplitude, or the arm motion outside the sagittal plane 
might be employed near the singular points for swings with large amplitude. 
Although this paper used the three-segment model for simplicity and focused on the 
configurations where COM is along the vertical line through the origin, our approach can be 
extended to more m p l e x  model and any configuration where COM is deviated from the 
vertical line. Future research should focus on various COM positions and experimental 
validation with a four-segment model including the hip joint (Sprigings et al., 1998) or a three- 
dimensional model (Bsewin et al., 2000; Yeadon & Brewin, 2003). 
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