SEGMENTAL ASYMMETRY AND ITS RELATIONSHIP WITH LOWER LIMB STRENGTH AND RANGE OF MOTION IN YOUNG SOCCER PLAYERS

Pedro Forte1, 3, Tiago M. Barbosa2, 3, Jorge E Morais1, 3, António Reis1, 3
1 Polytechnic Institute of Bragança, Bragança, Portugal
2 Nanyang Technological University, Singapore
3 Research Centre in Sports, Health and Human Development, Portugal

The aim of this study was to assess the relationship between range of motion, strength and limb alignment in young soccer players. Forty-seven young soccer players were evaluated for limb alignment with photogrammetry. Isometric strength was assessed with a strain gauge during leg curl and leg extension. Flexibility was measured using goniometry. Association between segmental asymmetry and strength were non-significant (-0.28<r<0.04; 0.61<p<0.96). However, significant Pearson’s correlations were found between segmental asymmetry and range of motion (-0.34<r<0.29; 0.02<p<0.05). It can be concluded that segmental asymmetry influences young soccer players’ range of motion.

KEY WORDS: strength, flexibility, posture, young, soccer.

INTRODUCTION: Soccer is a sport characterised by several specific actions (Reilly & Doran, 2003) and strength is a key-factor in the multiple accelerations performed over a match (Reilly & Thomas, 1976). Fitness components such as strength and flexibility may play a role in such accelerations and are related to body posture, notably to segmental alignment and potential asymmetries. Flexibility is influenced by muscle shortening related to agonist/antagonist imbalance, and postural changes (Sena, et al., 2013). Strengthening exercises should be prescribed to promote agonist/antagonist balance, prevent muscle-tendon shortening and realign body segments (Hrysomallis & Goodman, 2001). Correct posture aims to minimize joint stress and avoid body misalignment that will impair the mechanics and physiologic efficiency. Sports may induce or prevent the misalignment in body segments, resulting in alterations in strength, range of motion, balance and motor coordination (Aruin, 2006; Wojtys, et al., 2000; dos Santos, et al., 2007). Postural changes are related to pain, injuries and poor performance. For example, players with muscle strains had higher incidence of lumbar lordosis, sway back and knee abnormal inter-space (Watson, 1995). Back injuries were associated with shoulder asymmetry, scapula abduction, back asymmetry, kyphosis, lordosis and scoliosis (Watson, 1995). A bad posture seems to contribute to sports injuries in young and adult players (Alter, 1996; Bertolla, et al., 2007). However, the body of knowledge of the relationships or associations between segmental alignment, strength and range of motion in young soccer players is scarce. The aim of this study is to assess the association between these three components, hypothesising that there are significant associations between them.

METHODS: Forty-seven young Portuguese soccer players (13.02 ± 2.51 years) participated in this research, all with parental consent. Ten players compete in the U11, 10 in the U13, 12 in the U15 and 15 in the U17 local competitions. Segmental alignment was assessed with photogrammetry (SAPo, v. 0.086, Sao Paulo, Brazil). One picture was taken with a digital camera (Casio Exlim Zoom ex z1000, Shangai, China) in the frontal (anterior) view, with the subject in the orthostatic position. Styrofoam markers (2.5cm diameter), were placed on the main anatomical landmarks: antero-superior iliac spines, femoral trochanters, patellae, tibial tuberosities, knee joint line and the lateral and medial malleoli. The above landmarks were selected as parameters for misalignment. The
magnitude of asymmetry was obtained by the module difference of the demarcated points, with the software analysis of asymmetry measured in metres (ICC = 1.00; P<0.001).

Isometric strength (Newtons) during the leg curl was assessed with a strain gauge, and extension at 60 degrees of the right (MaxF-RLL-Ext) and left lower limbs (MaxF-LLL-Ext) was with a dynamometer (Kellis & Baltzopoulos, 1996). Each participant performed three trials (2 minute rest between trials) with the best trial (i.e., highest value) selected for analysis (Ramsay, et al., 1990; Hebestreit, Mimura & Bar Or, 1993).

Flexibility, i.e. range of motion, was assessed with a goniometer (Jamar, China). Hip flexion, extension and abduction, knee and foot flexion are the most solicited joints in performing soccer techniques (Ekstrand & Gillquist, 1982), and so chosen to be the selected variables. Normality and homoscedasticity assumptions were analysed with Kolmogorov-Smirnov and Levene tests, respectively. The main results are presented in mean, standard deviation and coefficient of variation (CV). Pearson’s correlation test (p<0.05) was selected to assess the associations between limb asymmetry, strength and range of motion.

RESULTS: Descriptive statistics for range of motion, strength and limb alignment are presented in table 1. Table 2 presents the significant correlations between range of motion, strength and limb alignment. Despite the mean of asymmetry, it is also pertinent to alert the known existence of asymmetry in some subjects and the variation of group values. The main correlations found in lower limb asymmetry were hip flexion with femoral trochanters (r = -0.32; p = 0.03), hip abduction with lateral malleolus (r = 0.29; p = 0.05). Knee and foot flexion with femoral troCHANTERS (r =-0.34; p = 0.02) and knee joint line (r = -0.31; p = 0.04), respectively.

DISCUSSION: The aim of this study was to assess the association between strength, range of motion and limb alignment. Significant correlation was obtained between hip and foot flexion and lower limb asymmetry. A positive correlation between hip flexion and maximum strength in knee flexion and extension for both legs were found. Positive relationships between strength and range of motion or flexibility, has also been reported in trunk flexion and maximum strength of the lower limbs, after a training program in basketball players (Song, et al., 2014). However, it is important to note that the muscular shortening may induce sarcomere reduction and compromise strength development. Flexibility training may contribute to strength building avoiding reduction of the sarcomeres (Kisner and Colby, 2005).
Significant correlation between hip flexion and femoral trochanteric asymmetry were also found. Moreover, associations between hip abduction and lateral malleolus asymmetry were identified. Femoral trochanters are commonly associated with lower limb and hip asymmetry; hip asymmetry relates to lumbo-pelvic flexion in ergometer rowing (Buckeridge, et al., 2012). Correlation of asymmetries between antero-superior iliac spine with knee joint line (r = 0.38; p = 0.01) and femoral trochanters were demonstrated (r = 0.37; p = 0.01), that may be explained by ground-up and top-down theories. These theories explain that upper body asymmetry may be predicted by asymmetry in the lower limbs of the body and vice-versa (Hollman, et al., 2006), that support the results obtained for lower limb asymmetry in this research. Hollman et al. (2006) also report that a reduction in strength of the hip abductors is associated with increased pronation of the foot. These findings are consistent with the hip abduction angle and the asymmetry with the lateral malleolus.

Table 2
Main correlations between range of motion, strength and limb alignment.

<table>
<thead>
<tr>
<th>Variables</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibility - Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip Flexion [º] - MaxF-LLL-Ext [kgf]</td>
<td>0.38</td>
<td>0.01</td>
</tr>
<tr>
<td>Hip Flexion [º] - MaxF-RLL-Ext [kgf]</td>
<td>0.55</td>
<td><0.001</td>
</tr>
<tr>
<td>Hip Flexion [º] - MaxF-LLL-Flex [kgf]</td>
<td>0.39</td>
<td>0.01</td>
</tr>
<tr>
<td>Hip Flexion [º] - MaxF-RLL-Flex [kg]</td>
<td>0.30</td>
<td>0.04</td>
</tr>
<tr>
<td>Posture – Range of Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hip Flexion [º] - Femur Trochanters Asymmetries [cm]</td>
<td>-0.32</td>
<td>0.03</td>
</tr>
<tr>
<td>Hip Abduction (º) - Lateral Malleolus Asymmetries [cm]</td>
<td>0.29</td>
<td>0.05</td>
</tr>
<tr>
<td>Knee Flexion (º) - Femur Trochanters Asymmetries [cm]</td>
<td>-0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>Foot Flexion (º) - Knee Articular Line Asymmetries [cm]</td>
<td>-0.31</td>
<td>0.04</td>
</tr>
<tr>
<td>Antero-Superior Iliac Spines - Femur Trochanters Asymmetries [cm]</td>
<td>0.37</td>
<td>0.01</td>
</tr>
<tr>
<td>Posture - Posture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antero-Superior Iliac Spines - Knee Articular Line Asymmetries [cm]</td>
<td>0.38</td>
<td>0.01</td>
</tr>
<tr>
<td>Lateral Malleolus - Medial Malleolus Asymmetries [cm]</td>
<td>0.32</td>
<td>0.03</td>
</tr>
<tr>
<td>Antero-Superior Iliac Spines - Femur Trochanters Asymmetries [cm]</td>
<td>0.37</td>
<td>0.01</td>
</tr>
</tbody>
</table>

A high CV in femoral trochanter asymmetry and antero-superior iliac spines was observed; this is a descriptive value that only represents the internal variability within the groups (Bedeian & Mossholder, 2000). The range of ages in the test group should be considered: during adolescence there is an element of hormonal action, which influences bone growth at different speeds in different skeletal segments at different ages (Kelly, et al., 1990). However, despite flexibility and strength, the posture is also influenced by many factors, such as social status, motivation and segmental hyper-solicitation, contributing to the correlation of the asymmetry (Aruin, 2006; Wojtys, et al., 2000; dos Santos, et al., 2007). This could be an explanation for the weak to moderate correlations.

CONCLUSION: It was found an association between limb asymmetry and range of motions. The range of motion demonstrated significant correlation with the segmental alignment. Therefore, coaches and athletes should monitor body alignments on a regular basis to prevent injuries and performance impairment.

REFERENCES:

