KINETIC AND KINEMATIC COMPARISON OF ALPINE SKI RACING DISCIPLINES
AS A BASE FOR SPECIFIC CONDITIONING REGIMES

Josef Kröll¹, Jörg Spörri¹, Christian Kandler¹, Benedikt Fasel², Erich Müller¹
and Hermann Schwameder¹

Department of Sport Science and Kinesiology, University of Salzburg, Austria¹
Laboratory of Movement Analysis and Measurement, Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland²

The purpose of this preliminary case study was to compare the alpine ski racing
competition disciplines slalom and giant-slamol with respect to principal kinematics of the
lower limbs and the acting forces. Knee angles and ground reaction forces of one high
level athlete were determined using inertial sensors and pressure insoles, respectively.
Slalom was characterized by a “high dynamic skiing mode” with a distinct “knee angle
and loading synchronism” between the inside leg and the outside leg. For giant slalom, a
polarized situation was observed: “higher quasi static loads at high knee angles” on the
outside leg and “lower eccentric-concentric loads at low knee angles” on the inside leg.
These findings may help to increase the specificity of conditioning training and
developing more discipline-specific exercises.

KEY WORDS: alpine skiing, movement analysis, specific conditioning

INTRODUCTION: The principle of “kinematic, kinetic, and neuromuscular correspondence”
states that specific training regimes and their exercises must be related to those parameters
of movement which characterize the structure of the competition technique (Müller, Benko,
Raschner, & Schwameder, 2000). In this context, information from biomechanical movement
analysis of the specific competition techniques is essential to enhance the quality of
conditioning training. There is common agreement that the influence of the quadriceps
muscles is dominant throughout a turning cycle in elite alpine skiing (Berg & Eiken, 1999).
Hence, with respect to specific training of this muscle group, detailed knowledge on the
kinematics of the lower limbs and the occurring ground reaction forces (GRF) is essential.
Athletes have to deal with different physiological and neuromuscular demands when
competing in the different disciplines of alpine ski racing. It is known from earlier studies that
even between the two technical disciplines of giant-slamol (GS) and slalom (SL) the average
turn times are substantially different: 0.86s for SL (Supej, Kipp, & Holmberg, 2011) and 1.72s
for GS (Spörri, Kröll, Schwameder, & Müller, 2012). Therefore, substantial differences of joint
angle and force time-courses might be present.

Regarding lower limb kinematics, it has already been shown that the knee angles (full
extension = 180°), at which SL and GS racers perform their turns, seems to be different as
GS turns result in lower knee angles and angular velocities than SL (Berg & Eiken, 1999).
However, these relatively old kinematic data might not have high validity with respect to
current skiing techniques, as shown recently for GS (Kröll, Spörri, Fasel, Müller, & Schwameder, 2015).

With respect to GRF, no direct comparison (same measurement setup) between SL and GS
exists in the published literature. Moreover, since turn force depends on both turn speed and
turn radius, it is not a priori clear whether GRF is lower as well, despite the lower speed in
SL. From a biomechanical perspective, the smaller turn radius in SL may mitigate the
decreasing force effect of the slower speed. A similar mechanism was recently shown when
comparing GS with super-G and downhill (Gilgien, Spörri, Kröll, Crivelli, & Müller, 2014).
Consequently the purpose of this study was to describe and compare the current SL and GS
techniques with respect to limb kinematics and GRF. The findings might help to overcome
the lack of knowledge (old kinematic data; no direct comparison of GRF) and to increase the specificity and quality of conditioning training.

METHODS: In this preliminary paper a descriptive case report of one representative high level athlete is served. The athlete (17.4 FIS Points in SL) performed four runs on a SL course with 20 turns (11 analysed) and four runs on a GS course with 16 turns (11 analysed). The two fastest runs of each condition were considered, resulting in a total of 22 turns per discipline. The athlete was allowed to use his own equipment. The kinematic and kinetic measurement was performed bilateral, which means that each turn provides data from the outside leg (OUTSIDE) as well as the inside leg (INSIDE).

Knee angles were determined based on four inertial measurement units (IMU) at 500Hz, which were fixed on the shank and thigh of both legs. For the calculation of the knee angle, skiing-specific evaluation algorithms were developed and validated. The validation against a video camera reference system depicted an accuracy of -1.4° and a precision of 5.5° (Fasel, Spörri, Chardonnens, Gilgien, Kröll, Müller et al., 2013). Simultaneous with the knee angle measurements, the GRF was measured with the PEDAR Insole System of Novel (100Hz). The TOTAL GRF, calculated as the sum of the OUTSIDE GRF and INSIDE GRF, was used for automatic detection of beginning and end of the turn via functional minima during the turn switch. All data were filtered using a low-pass Butterworth filter with a cut-off frequency of 6Hz and time normalized to 100% of the turn cycle. For each turn and parameter (knee angle OUTSIDE, knee angle INSIDE, GRF TOTAL, GRF OUTSIDE, GRF INSIDE) the mean, minimum (Min) and maximum (Max) values were calculated and subsequently averaged across all turns within each discipline. The same procedure was followed for the turn times. Time normalized turns were averaged for illustrating descriptive course differences.

RESULTS / DISCUSSION: In general, the results of the actual case study are in good correspondence with earlier group mean data for GS (Kröll et al., 2015). For SL, the mean turn time was 0.83s±0.07, which is in line with previous findings (Supej et al., 2011). For GS, the mean turn time was 1.39s±0.11, which is slightly less than previously reported (Spörri et al., 2012), but can be interpreted as representative according to actual gate to gate analysis (e.g. World Championship 2015 Men: 1st run=1.31s / 2nd run=1.41s). Therefore, the time structure of the current data seems to be reasonable and useful for interpretations towards actual conditioning aspects. With respect to the knee angle measurements, the OUTSIDE leg has greater knee angles during the GS turns compared to SL turns (Table 1). This result is in opposite to previous literature reports (Berg & Eiken, 1999; Szmedra, Im, Nioka, Chance, & Rundell, 2001) and shows that current competition techniques have different requirements compared to skiing techniques from years ago. On the other hand, the INSIDE leg has distinctly smaller knee angles for GS compared to SL.

Concerning the shape of changes in the knee angle, one can identify similar characteristics between the OUTSIDE leg during GS and the OUTSIDE and INSIDE legs during SL (Figure 1A). Pronounced knee extension can be observed in the early phase of the turn, which is accompanied by rather low GRF. During the main phase of the turn, where the forces are highest, the knee angle remains relatively constant. This is an indicator that quasi static muscle work is dominant since the changes in angle and the angular velocities are very small during this phase. Knee flexion then occurs during the last quarter of the turn. This eccentric phase occurs already in the unloading phase and, therefore, is accompanied with rather low...
forces. A distinctly different shape of the knee angle is shown by the INSIDE leg in GS: a clear sequence of knee flexion to a minimum of about 65° (occurring at about 50% of the turn) and a subsequent extension of the knee. Those rather low knee angles are accompanied by forces which are not as high for the INSIDE leg as on the OUTSIDE leg. However, with respect to the low knee angles, the forces are still quite substantial and should be considered in the training process as specific feature of the GS discipline. The pronounced difference between OUTSIDE and INSIDE legs in GS can be explained from a functional perspective by the greater whole body inclination in GS.

Table 2: Values of the ground reaction forces (n=22 turns per discipline; 1 BW =817N)

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
<th>OUTSIDE leg</th>
<th>INSIDE leg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>Mean</td>
</tr>
<tr>
<td>Slalom [BW]</td>
<td>1.74±0.10</td>
<td>3.15±0.31</td>
<td>0.98±0.14</td>
</tr>
<tr>
<td>Giant-Slalom [BW]</td>
<td>1.95±0.15</td>
<td>3.15±0.21</td>
<td>1.31±0.16</td>
</tr>
</tbody>
</table>

![Figure 1: (A) Course of knee angle OUTSIDE and knee angle INSIDE. (B) Course of GRF TOTAL. (C) Course of GRF OUTSIDE and GRF INSIDE. Data are presented as time normalized mean±sem. For better comparison of the disciplines, data are plotted along the mean run time for slalom (0.83s±0.07) and giant-slalom (1.39s±0.11). 1 BW =817N.](image-url)

The mean TOTAL GRF is greater for GS compared to SL, although the maximum forces are similar (Table 2). This indicates that the relative time which the skier is exposed to high loads is substantially shorter in SL. A unique feature in alpine skiing is that the total load has to be distributed with respect to functional aspects of the ski-snow interaction in a specific way between OUTSIDE and INSIDE leg of a turn. Comparing GS and SL, a more balanced
distribution between the two legs can be observed in SL, and a much more pronounced load of the OUTSIDE leg can be observed for GS (Figure 1 and Table 2). This results in the highest mean and peak forces on the OUTSIDE leg during GS accompanied with the lowest mean and peak forces on the INSIDE leg (Table 2). The shape of GRF depicts a substantially higher rate of force development for SL on both OUTSIDE and INSIDE compared to GS. A distinct feature of the GRF in GS OUTSIDE leg is the very long time of quasi static contraction with high forces. This load characteristic is known to affect the blood flow to working muscle and, therefore, the performance of muscle (Szmedra et al., 2001). Specific training exercise may help to counter this decrease in performance.

CONCLUSION: The comparison between the two selected competition disciplines depicts some different fundamental features. Slalom is characterized by a "high dynamic skiing mode" with distinct "knee angle and loading synchronism" between the inside leg and the outside leg. This means that specific conditioning exercises should focus on synchronous loading of both legs with knee angles varying between 90° and 120°. Furthermore, the time structure of a slalom turn cycle and, therefore, the high rate of force development on the one hand and the short quasi static load on the other hand should be targeted. For giant slalom, a polarized situation was observed: “high quasi static loads at high knee angles" on the OUTSIDE leg and “lower eccentric-concentric loads at low knee angles” on the INSIDE leg. Therefore, high knee angles (135°) and high loads with quasi static contractions over a substantial time span (>1s) should be targeted with respect to OUTSIDE leg specificity. On the other hand, exercises at rather low knee angles (from 100° towards 65°), with a rather slow eccentric-concentric (time span 1.4s), should be part of a training regime with respect to giant-slalom INSIDE LEG specificity. However, all of the conclusions drawn at this point have to be considered carefully, since they base on a case study only. Nevertheless, the current conclusions seem to be plausible, since it is known from earlier giant-slalom studies (Kröll et al., 2015), that general features of the technique are omnipresent among racers.

REFERENCES: