VALIDITY AND RELIABILITY OF THE MICROSOFT KINECT TO OBTAIN THE EXECUTION TIME OF THE TAEKWONDO’S FRONTAL KICK

Cristiano Arruda Gomes Flôr¹, Amanda Piaia Silvatti³, Hans Joachim Karl Menzel¹, Gustavo Ramos Dalla Bernardina³, Cláudio Márcio de Souza Vicente² and André Gustavo Pereira de Andrade¹

Biomechanics Laboratory, Federal University of Minas Gerais, Brazil¹
Computer Vision and Robotics Laboratory, Federal University of Minas Gerais, Brazil³
Biomechanics Laboratory, Federal University of Viçosa, Brazil²

The aim of this study was to verify the validity and reliability of the Microsoft Kinect® as a tool to analyze the time of the frontal kick of the Taekwondo (ap chagui). The volunteers performed 15 repetitions of this kick while the execution time data was obtained simultaneously, by the Microsoft Kinect® and the OptiTrack System (golden pattern). In order to verify the reliability of the durations of the kicks we calculated the Intraclass Correlation Coefficient (ICC3,k) between execution times found for each system. The Pearson Correlation was used to test the concurrent validity. The results of ICC and r Pearson presented in this study indicate that the Microsoft Kinect®, associated with a tracking algorithm, could be a feasible tool to evaluate the execution time of the frontal kick of the Taekwondo (ap-chagui).

KEYWORDS: 3d kinematics analysis, markerless motion capture, martial arts.

INTRODUCTION: Taekwondo (TKD) is a Korean martial art and is an Olympic sport since 2000 and its main characteristic is the usage of kicks to hit the opponent in the trunk or in the head (Vieten et al., 2007). Since the execution time and the velocity are reported in the literature as the determinant variable to the hit success (Jakubiak & Saunders, 2008 and Falco et al., 2009), to obtain it is important to plan and evaluate the training programs (Leichtweis et al., 2012). In order to obtain these variables the best method is the 3D kinematic analysis and it uses multiple high speed cameras and some retro-reflexive markers were fixed in the subject (Baker, 2006). Many commercial systems are available to obtain 3D kinematic data (Vicon, MAC System), however they were expensive and cumbersome (Clark et al., 2012). Recently, some studies using the Microsoft Kinect® (Microsoft, EUA) have been presented as an inexpensive and portable solution to perform the motion analysis (Preis et al., 2012; Clark et al., 2012; Sung et al., 2011; Gabel et al. 2012). The Microsoft Kinect® combines the utilization of a camera and an infrared sensor to create a 3D body model (Mentiplay et al., 2013). In order to improve the Microsoft Kinect® to motion analysis some automatic recognition algorithms were proposed in the literature, making this a useful tool for real time analysis (Vieira et al., 2014; Sung et al., 2011). Nowadays, these algorithms have been applied to monitoring the elderly daily living activities, surveillance and the interaction between man and robot (Vieira et al., 2014, Elgendi et al., 2012). Despite the high accuracy of the sensor Microsoft Kinect® to perform a pattern recognition already found in previously work (Vieira et al., 2014), none of them was applied specifically with the purpose to record the duration and the number of trials of different action performed. So, the aim of this study was to investigate the validity and reliability of the Microsoft Kinect®, to obtain the execution time of the frontal kick of the Taekwondo (ap chagui). This system could become a monitoring tool and could be used to control the load in the training, allowing to quantify the duration of each activities. Another advantage could be the usage of a valid and reliable tool that will allow the coach to have a systematic record of all training sessions, and so, to make the relationship between the performance of athletes and what was trained and the consequent adjustment in the futures plans.
METHODS: We analyzed four highly trained (5.75 ± 2.63 years of practice) Taekwondo athletes (18.25 ± 2.22 years) from the Sports Training Center from the Federal University of Minas Gerais (CTE-UFGM).

After a warm up, the athlete was asked to perform the frontal kick (ap chagui) with the right leg. The initial condition was with the kicking foot in front of the support limb. They performed 15 sequential repetitions in two velocities 3.00 m.s\(^{-1}\) (slow) and 8.00 m.s\(^{-1}\) (fast).

The kick was recorded simultaneously by the Optitrack 3D kinematic system (NaturalPoint, EUA), defined as golden pattern, and by the Microsoft Kinect® (Microsoft, EUA). Eighteen optoelectronics cameras (Prime 17w, 360Hz, field of view 70° and resolution 1.7 MP) were positioned around the athlete. The 3D coordinates of the third metatarsal of the right leg was obtained as a function of time. The one camera (30Hz and resolution 0.3MP) of the Microsoft Kinect® was positioned in the sagittal plane. In order to obtain automatically a point to represent the foot of the athlete we used the 20 anatomic points estimated in the athlete body acquired by Kinect and a routine developed in the Visual Studio Ultimate 2013 (Microsoft, EUA).

RESULTS: Table 1 shows the mean and standard deviation of the execution time by Microsoft Kinect® and Optitrack system and the results of the paired t-test with the effect size.

<table>
<thead>
<tr>
<th>Velocities (m.s(^{-1}))</th>
<th>Microsoft Kinect (Mean±sd)</th>
<th>Optitrack (Mean±sd)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>1.89±0.88</td>
<td>1.97±0.72</td>
<td>0.521</td>
</tr>
<tr>
<td>Fast</td>
<td>0.67±0.13</td>
<td>0.72±0.08</td>
<td>0.002</td>
</tr>
</tbody>
</table>

In order to verify the reliability of the execution time (s) by Microsoft Kinect®, ICC was determined and is shown in table 2.
Table 2
Intraclass Correlation Coefficient (ICC3,k) for the kick time in Microsoft Kinect®

<table>
<thead>
<tr>
<th>Velocities (m.s⁻¹)</th>
<th>CCI(3,k)</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>0.992</td>
<td>0.001</td>
</tr>
<tr>
<td>Fast</td>
<td>0.971</td>
<td>0.001</td>
</tr>
</tbody>
</table>

The concurrent validity, between the two systems was analyzed by correlation analysis and the results are shown in the table 3.

Table 3
Concurrent validity accessed by Pearson correlation coefficients (r) between the two systems

<table>
<thead>
<tr>
<th>Velocities (m.s⁻¹)</th>
<th>r Pearson</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>0.937</td>
<td>0.001</td>
</tr>
<tr>
<td>Fast</td>
<td>0.829</td>
<td>0.039</td>
</tr>
</tbody>
</table>

DISCUSSION: Previous studies that used the Microsoft Kinect®, to measure some postural control (Clark et al. 2012 and Yang et al. 2014) found ICC values ranging from 0.66 to 0.94. The results of ICC of the Microsoft Kinect®, presented in table 2, indicate very high reliability for the determination of durations of the kicks (ap chagui).

Related to the concurrent validity between the systems (table 3) we found in this study high and significant values for the fast and slow kick, however the mean values of the fast kick obtained by the Kinect were significantly different of the values obtained by the Optitrack. This fact shows the limitation of the Kinect to analyze fast movements, since it acquire the data in a low frequency (30Hz). However, it is important to highlight that besides the difference between the systems the Kinect was effective to measure the duration time and the number of repetitions of the kick.

CONCLUSION: The results presented in this study indicate that the Microsoft Kinect®, associated with a tracking algorithm, could be a feasible tool to evaluate the execution time of the frontal kick of the Taekwondo (ap chagui). These results associated with low cost, simplicity and the possibility to use in different environments could highlight the possibility to apply the Kinect to analyze the sport movements and quantify the load of the training.

REFERENCES:

