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Ankle sprain is one of the most common sports injuries. Our research team has developed 

an intelligent system to prevent the injury, and the system relies on a method to identify an 

ankle sprain motion. The purpose of this study is to increase the accuracy of Support Vector 

Machine (SVM) in classifying ankle sprain from normal motions and investigate the 

feasibility to employ SVM in the intelligent system. Fourteen subjects performed trials of (a) 

walking, (b) vertical jump, (c) stepping down a stair, and (d) jumping off a stair. Data from a 

motion sensor at the posterior calcaneus were used and trimmed to 230 (0.4s) and 60 

(0.12s) window size, and were transformed from time to frequency domain by discrete 

Fourier Transform. Motion data from eleven subjects (11 out of 14) were used for training 

the SVM. A Radial Basis Function kernel function was employed in the SVM. Accuracy was 

tested on the data from another three subjects, which reached 96.1% and 93.1% for window 

size 230 and 60 respectively.  
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INTRODUCTION: Our research team has developed an intelligent system to prevent a 

supination type ankle sprain injury (Fong, 2012), which accounts for 14% of all sports injuries 

and is considered the most common sport trauma (Fong, Hong, Chan, Yung, & Chan, 2007). 

The system consists of a motion sensor placed inside the footwear. The motion sensor 

includes a tri-axial gyroscope and accelerometer to measure and monitor the kinematic 

motion of the ankle joint in three directions. When the ankle inversion velocity exceeds a 

pre-set threshold (Chu et al., 2010), a small electrical current is sent to the peroneal muscle in 

lower leg to stimulate muscle contraction to stop further inversion of the ankle, therefore to 

prevent ankle sprain (Fong, Chu, & Chan, 2012).  For the device to function ideally, it should 

be able to discriminate ankle sprain from other types of common sport motions, such that not 

only would it be able to recognize ankle sprain accurately, but also not to falsely recognize 

common sport motions as injurious spraining motion. The accuracy of the current device is 

91.3% and window size employed is 500 (1s) (Chan et al., 2010), which means the error was 

about 8.7% and window size is too large to allow real-time application , there is thus a room 

for improvement. 

The objective of this study is to improve the accuracy of the device in discriminating ankle 

sprain and common sports motion, which is done by using support vector machine, a binary 

classification method. This study would also seek possibility to apply the method in real-time 

by using only the beginning part of the motions and reducing the window size to 60 (0.12s). 

 

METHODS: Fourteen adult subjects participated in this study. Subjects wore four motion 

sensors, each consists of a tri-axial gyroscope and accelerometer, on the left or right foot. The 

purpose of using multiple sensors is to investigate the variation in strength of signal for sprain 

classification from different parts of the foot. The sensors are placed at including the dorsal 

area of the third metatarsal, the medial aspect of the first metatarsal, the lateral aspect of the 

fifth metatarsal, and the posterior calcaneus. The sampling frequency of the sensors was 

500Hz. Subjects first performed simulated sprain using the supinated sprain machine (Chan, 

Fong, Yung, Fung, & Chan, 2008). The machine can simulate ankle sprain with different 



 

 

degrees of inversion and plantarflexion. This study 

adopted four combinations, namely: 0∘ (pure inversion), 
23∘supination, 45∘supination and 67∘supination. 10 

trials were performed for each combination. Afterwards, 

subjects performed 10 trials of each of the following 

common sports motions in random order: (a) walking, (b) 

vertical jump, (c) stepping down from a stair, and (d) 

jumping off a stair. Long range common motions like 

running and cutting are not performed due to the 

restriction of the wire connecting the sensor and the 

computer. 

The recorded data underwent several processes before 

being used for training and classification in the support 

vector machine. The first procedure was to trim out data 

corresponds to the beginning part of motion. Since the 

purpose of the sprain-free device is to identify and then 

correct a sprain before it has completed, training and 

classification should only involve the beginning part of 

motions. The window size employed is 60, which 

corresponds to 0.12s. However, window size 230 

(~0.4s), which normally include the majority part of 

motion, is also employed in order to investigate the 

effect of a bigger window size on the classification 

accuracy. Since the signal strength of the sensor at the posterior calcaneus is the strongest, 

the data from only this sensor was used. The second procedure was to carry out a discrete 

Fourier Transform (FFT) on each data parameter to transform the data from time domain to 

frequency domain. This allows the waveform characteristics to be visualized and 

characterized. In this study, only the first ten FFT components in each data parameter are 

trimmed out.  

Support vector machine (SVM) is a supervised learning algorithm. The use of SVM involves 

two stages, which are the training of model, and then classification using the trained model. 

Training of SVM is to draw an optimal hyperplane that can separate data effectively into two 

classes, which are sprain and common motions in this study. Before training, a kernel function 

has to be specified. SVM performs only linear classification, i.e. classify data using linear 

function, however, most situations in real world are complicated and data cannot simply be 

classified with high accuracy using a linear function. A kernel function must be used to map 

the data to a high dimensional feature space where data can then be linearly classified. The 

kernel used in this study is the Radial Basis Function (RBF). Studies conducted by Keerthi 

and Lin (2010) showed that the RBF kernel is the most reliable kernel in many situations. 

Before training, data is scaled to [-1,1]. The purpose of scaling is to facilitate the dot product in 

the kernel function to prevent the appearance of extremely large or small numbers. SVM 

using RBF kernel involves two major parameters: Cost (C) and Gamma (g). Cost is related to 

the way the hyperplane is drawn. Gamma, appears in the RBF kernel, controls how data are 

mapped to the feature space. In this study, the two parameters are optimized by cross 

validation and grid search. Parameter selection is performed before each training. Training 

and classification are done in Matlab (Version R2012a, MathWorks, Inc., Natick, 

Massachusetts, USA).  

In this study, data from 11 subjects (out of 14) was used for training stage of the SVM. They 

contributed 726 trials on simulated ankle sprain motions and common sporting motions. 

Another three subjects contributed 200-220 trials on simulated ankle sprain motions and 

common sporting motions for testing the accuracy of the trained SVM model.  

Three investigations were carried out in the study. First is the investigation on the number of 

training subjects with accuracy for window size 60 and 230. The test data set was kept the 

Figure 1: Setup for data collection 

of simulated ankle sprain 



 

 

same for all trials. The number of training subjects starts from 4, and one more subject would 

be added to the training data set in the next trial. One more trial would be done and then ends 

if the accuracy exceeds 90%, which is regarded as a satisfactory accuracy. Separate training 

and testing were done for each trial and window size. Second is the investigation on the effect 

of window size on accuracy. Two window sizes were studied, which are 230 (0.4s) and 60 

(0.12s). Window size 60 includes only the beginning part of the motion while 230 includes half 

or most part of the motion. Training data set and test data set were the same for both window 

sizes; they differ only by the duration of time included in each data parameter. Separate 

training and testing were done on each window size. Third is the investigation of the effect of 

parameter selection on accuracy.  Training and test data set were kept the same in each 

trial. In using cross validation (CV) and grid search to search for best parameter, the 

searching step size for log2C and log2g  are set to 2, then a combination of trial best 

parameter would be output from CV and grid search (Table 4). Step size 2 is used since 

further reducing the step size may increase the duration of CV and grid search. Then C and g 

are searched for values close to the trial best parameter to determine if better accuracy can 

be obtained. 

 

RESULTS: The investigation in the influence of number of training subjects showed that for 

window size 230, accuracy increased with number of training subjects, and 4 training subjects 

can already achieve accuracy >90% (Table1). For window size 60, accuracy showed no 

consistent increase in accuracy. This demonstrated that individual variation in performing 

same motion affected accuracy significantly when window size was reduced. Up to 11 training 

subjects, accuracy was still lower than 90% (Table 2). It was suspected that a large number of 

training subjects was required to overcome the individual variation. The investigation in 

window size showed that accuracy was lowered when widow size was reduced from 230 to 60 

(Table 3), where the source of training data and test data were the same in the two cases. For 

small window size, better parameter selection was required to achieve high accuracy. 

 

Table 1: No. of training subjects with accuracy for window size 230 

Window Size No. of Training 

Subjects 

No. of Training 

Data 

No. of Test 

Subjects 

Accuracy of 

Classification 

230 4 243 3 93.98% (203/216) 

230 5 296 3 95.83% (207/216) 

230 6 363 3 95.83% (207/216) 

 

Table 2: No. of training subjects with accuracy for window size 60 

Window Size No. of Training 

Subjects 

No. of Training 

Data 

No. of Test 

Subjects 

Accuracy of 

Classification 

60 8 510 3 83.25% (169/203) 

60 9 589 3 75.86% (154/203) 

60 10 658 3 88.67% (180/203) 

60 11 726 3 88.67% (180/203) 

 

Table 3: Effect of window size and accuracy 

Window Size No. of Training 

Subjects 

No. of Training 

Data 

No. of Test 

Subjects 

Accuracy of 

Classification 

230 6 379 3 95.58% (195/204) 

60 6 379 3 86.27% (176/204) 

 

The investigation in parameter selection demonstrates that Cost (C) is less sensitive to 

Gamma (g). The search of log2C may keep in step size 2 but the search of log2g was reduced 

to step size 0.1 in order to get optimal parameters (Table 4). The final classification result for 



 

 

window size 230 was 95.83% accuracy with C=32 and g=0.00781. For window size 60, the 

accuracy is 93.10% with C=32, and g=1.3. 

 

Table 4: Parameter selection and accuracy for window size 60 

Parameters Accuracy of Classification Parameters Accuracy of Classification 

*C=32, g=0.5 88.67%(180/203) C=16,g=1.30 93.10% (189/203) 

C=16, g=1.0 92.12% (187/203) C=16, g=1.40 91.63% (186/203) 

C=16, g=2.0 87.68% (178/203) C=32,g=1.40 91.63% (186/203) 

C=4, g=1.0 92.12% (187/203) C=16, g=1.35 92.12%(187/203) 

C=16, g=1.5 91.13%(185/203) C=32, g=1.35 92.12%(187/203) 

C=16, g=1.1 92.61%(188/203) C=64, g=1.30 93.10% (189/203) 

C=32, g=1.3 93.10% (189/203) C=128,g=1.30 93.10% (189/203) 

*Best parameters with step size 2 for log2C  and  log2g  

 

DISCUSSION: The team had previously conducted studies to classify ankle sprain and 

normal motions by SVM. (Chan et al., 2010) The window size adopted in that study was 500 

(~1s) and the best classification accuracy was 91.3%. This study was a following-up of the 

previous study. In this study, classification accuracy was increased and window size was 

reduced to 60 to seek real-time application. It was expected that accuracy can be further 

increased by employing more training subjects in the case of window size 60. Errors may 

have been induced for trimming the wrong part of data and also from problems in data 

recording where it was sometimes found that motion sensors malfunctioned in the middle of 

data collection. The most time consuming part in using SVM was the training stage. Once a 

model was trained up, classification was quick and easy. To increase possibility of real-time 

application of SVM in sprain-free shoes, further studies could be done to reduce the window 

size to smaller than 50 (~0.1s). Furthermore, a reliable wireless system has to be attained to 

transfer data from sensor to computer in real-time, such that real-time classification can be 

carried out. 

  

CONCLUSION: The final classification result for window size 230 (~0.4s) and 60 (~0.12s) 

were 95.83% and 93.1% respectively, which was satisfactory. Classification accuracy would 

decrease with smaller window size, and parameter C was found to be less sensitive than g. 

Step size for g has to be reduced to 0.1 to get optimal g-value. 
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