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Front crawl is an alternating swimming stroke technique in which different phases of arm 
movement induce changes in acceleration of limbs and body. This study proposes a new 
approach to use inertial body worn sensors to estimate main temporal phases of front 
crawl. Distinctive features in kinematic signals are used to detect the temporal phases. 
These temporal phases are key information sources of qualitative and quantitative 
evaluation of swimming coordination, which have been assessed previously by video 
analysis. The present method has been evaluated upon a wide range of coordination and 
showed a difference of 4.9% with video based system. The results are in line with video 
analysis inter-operator variability yet offering an easy-to-use system for trainers. 
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INTRODUCTION: A reliable data capture technique based on scientifically sound principles 
is a key to carry on all human motion studies. Human motion analysis in the water comprises 
complications as the water element avoids using many classical techniques of motion 
capture. Traditionally, assessment of swimming technique has been performed based on 
frame-by-frame video analysis (Callaway et al., 2009). The video footage allows evaluation of 
both qualitative and quantitative features of swimming such as the ratio of arm strokes, 
stroke length, angles of arm joints etc. However, the method is burdensome to be fully 
automated and entails demanding data post-processing. The functionality of the system can 
be affected by various factors such as restricted field of view, water-air interface turbulence, 
refraction of light in the water and image blurring (Schechner & Karpel, 2004). In 3D analysis 
the field of view of video based system provides only 2 or 3 cycles that can hardly be 
representative of a lap containing more than 15 cycles and makes video based inter-cycle 
variability assessment misleading. 
Consequently, there is a need for an easy-to-use system with short set up time that can be 
used openly by coaches in swimming pool. A new emerging alternative to video based 
swimming analysis equipment is inertial sensor, which can be placed on different sites on 
swimmers body. Pansiot et al. (2010) and Bächlin et al. (2009) used 3D accelerometer data 
in order to provide information such as stroke counts, turn and wall push-off detection and 
some spatial parameters. According to the current knowledge of the authors, Ohgi (2002) 
have performed the only study on front-crawl arm cycle phase-detection based on inertial 
signals. He used wrist-worn sensor containing 3D accelerometer and 3D gyroscope. Since 
he did not consider the orientation information during phase detection, he was not able to 
determine the beginning of recovery phase. 
The interaction between intrinsic dynamics of body and water mechanical properties results 
in coordination between arms and legs as well as inter-arm coordination. A widespread 
metric to quantify arm stroke coordination is index of coordination (IdC), which was 
introduced by Chollet et al. (2000). The index is based upon lag time between the propulsive 
phases of each arm and to date is assessed by human operators using video based 
systems. We hypothesized that there are temporal features in kinematic signals of swimming 
from which we can calculate IdC. The objective of this study was to present an automated 
inertial system in order to detect main stroke temporal features for IdC calculation. The data 
from 3D accelerometer along with 3D gyroscope was used in data fusion filters to 
discriminate arm propulsive and non-propulsive phases to describe arm coordination.  

a with-in methods repeated ANOVA was computed for each method comparing the mean 
vertical jump displacements across jumps one, two, and three. If the ANOVA results were 
significant, Bonferroni-adjusted pairwise comparisons were used to determine the location of 
significant differences between jump trials. Statistical signifiance was set at =0.05. 
 
RESULTS: The mean displacements for the three jumps were found to be 37.6+7.98 cm for 
the forceplate and 47.6+9.74 cm for the Vertec.TM Displacements between both methods 
were found to be significantly correlated (r=.91, p<.001); however, significant differences 
were also found between the means (t=13.6, p<.001). Repeated measures ANOVA revealed 
no significant differences between the three estimated displacements from the forceplate 
(F<.001, p=.985). However, there were significant differences between the three VertecTM 
displacements (F=17.0, p<.001). The mean displacements were found to increase each 
jump. Follow-up pairwise comparisons revealed significant differences between jumps one 
and two (p<.001) and jumps one and three (p<.001). 
 
DISCUSSION: The results of this study indicate that although the two methods were highly 
correlated, the significant differences may be more noteworthy. VertecTM displacements were 
10 cm higher on average than the displacements from the forceplate. This difference in 
means was slightly lower than discovered by Ferreira et al. (2010), who found a mean 
difference of approximately 13 cm. However, the mean differences in displacements found in 
this study were greater than those reported by Leard et al. (2007) between the VertecTM and 
a Just Jump mat (approximately 5 cm) and between the VertecTM and a 3-camera motion 
analysis system (approximately 4 cm). It is likely that the differences in means between this 
study and the others that used the same countermovement jumping technique were due to 
using a flat foot position to measure the initial VertecTM reach height. Forceplates estimate 
vertical jump displacements starting when the toes leave the forceplate, therefore, using the 
flat foot method may falsely increase VertecTM displacement scores by a significant amount. 
The consistency across the three forceplate scores, however, confirms the reliability of this 
method. The significant difference between the three displacements with the VertecTM 
suggests there may also be a learning effect when using this method. The learning effect 
was probably due to the participants becoming more comfortable with the coordination of 
jumping while simultaneously reaching for the VertecTM vanes. 
 
CONCLUSION: The results of this study displayed significant differences between the two 
methods of measuring vertical jump displacements. While this study did show an 
overestimation of maximal vertical jump height when using the VertecTM method, it may have 
been due to using the flat-foot method for the standing reach height. Therefore, consistency 
needs to be established across studies with respect to initial reach measurement, and 
caution should be used when comparing study results if the initial reach method is not 
known.  
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For each cycle stroke tPUL, tREC and IdC were estimated by inertial sensors and compared to 
values obtained by video analysis (reference system). A test-retest process has been done 
to evaluate the reliability of our video analysis. Statistical test and interclass correlation 
coefficient were used for test-retest reliability assessment. 
 
RESULTS: Fig.2 depicts a typical result of phase detection where the starts of pull and 
recovery phases found on right (Fig.2 a,b,f) and left arm (Fig.2 d,e,c) signals by applying our 
algorithms. In addition, this figure illustrates different time intervals to estimate IdC. By 
considering all trials in which both pull and recovery instants were detectable for the 
operators, we had a total of 126 video-extracted cycles to compare with the same 
parameters estimated by the inertial system. 

Figure 2: The beginning of pull (circles) and recovery (squares) phases using proposed 
algorithm on right and left arms. Pitch angular velocity of the right (a) and left (d) arms in 
sensor frame with relatively motionless period before tPUL. Forward acceleration of the right (b) 
and left (e) arms in sensor frame with motionless period before tPUL. Detection of recovery on 
the left (c) and right (f) arms on local maximum of ||afix-g|| as explained in the method. 
 
Table 1 summarizes the difference between time parameters (expressed in number of 
frames) and IdC (in %) estimated by operators (using video), each operator and Inertial 
system, and test-retest for one operator. With the video footage we had only 3 cycles per lap. 
Five laps out of 18 laps of each subject used for test-retest process. No significant difference 
between the test and retest video analysis was observed. The ICC(1,1) for test-retest of 
operator was 0.97. The comparison of IdC has been performed upon a broad coordination 
range (IdC=-16 to15.7) on video footage. 
 
Table 1: Mean ± Standard Deviation of difference in Cycle Duration (ΔTC), start of Pull (tPUL) and 
Recovery (tREC), in frames and IdC in %  

Difference ΔTC tPUL tREC IdC 
Operator1 - Operator2 0.0±0.7 -0.8±2.3 -0.2±0.9 1.8±4.2 

Operator1 - Inertial system 0.1±1.2 -0.7±3.1 -0.2±1.4 1.3±4.5 
Operator2 - Inertial system 0.2±1.1 0.0±3.6 0.0±1.7 -0.5±4.9 

Operator1 Test - Retest 0.0±0.5 -0.1±1.0 0.0±0.6 0.2±2.4 

METHODS: Seven elite swimmers (18.7 ± 5.3 yr, 177.4 ± 4.8 cm, 67.7 ± 5.7 kg) have 
participated in this study. Trials were performed as three 300-m front crawl in a 50-m indoor 
pool. The athletes were asked to maintain their coordination as long as possible in three 
different modes: one freely-chosen, one catch-up mode (with a lag time between two 
propulsions as in long-distance paces) and one in superposition mode (with an overlap 
between two propulsions, as in sprint events). So we can ascertain that the system was 
tested in broad range of coordination. Subjects were filmed by two synchronised sagittal and 
frontal underwater cameras (25 Hz). Two inertial units (Physilog®, BioAGM, CH) including 
3D accelerometer (±10g) and 3D gyroscope (±1200°/s) recording data at 500Hz and 
synchronized with video cameras, were placed on the forearms of each swimmer. A push-
button, which started the sensors’ data acquisition, also provided a flashlight in front of video 
cameras to synchronize the two systems. The sensors’ axes were aligned to the anatomical 
body axes by performing a functional calibration procedure similar to Favre et al. (2009). 
Kinematics signals (acceleration and angular velocities) were expressed in the sensor frame 
XSYSZS (after alignment with anatomical frame). The transformation of these kinematics 
signals in the fixed inertial frame XFYFZF was obtained by using the method proposed by 
Favre et al. (2006). Fig.1 illustrates the coordinate frames and directions used in this study.  

Figure 1: Orientation of arm obtained in Fixed frame (XFYFZF) from Sensor frame (XSYSZS). 
 
In order to detect the beginning of pull and recovery phases using inertial sensors, we 
considered the definition of Chollet et al. (2000). Based on their definition each arm stroke 
can be divided into four distinguishable phases i.e. entry and catch, pull, push and ultimately 
recovery. Distinctive features on kinematic signals discriminate these phases. A complete 
stroke cycle (ΔTC) has been determined as the time interval between two successive peaks 
(tωp+) of pitch angular velocity of arm (see also Fig.2a in Results). We considered that pull 
phase starts after a relatively motionless period of the arm in the catching phase. This period 
is observable in pitch angular velocity (S,pitch) and the forward acceleration (aS,f in Fig.2b)  of 
the arm expressed in sensor frame, where thereafter the slope of both signals changes 
drastically and corresponds to the backward and downward movement of the forearm. The 
beginning of the pull at each stroke has been determined by detecting this slope change. For 
this purpose primarily, the first negative peak (tωp-) of the S,pitch was detected. Then the 
change in the slope of both signals (S,pitch, aS,f), were detected in the interval tωp++0.2ΔTC, 
tωp- using the cumulative sum algorithm (Gustafsson & Firm, 2000). The beginning of the pull 
(tPUL) was computed as the average of detected instant on both signals.  
To detect the beginning of recovery phase, we considered that it starts with a local maximum 
acceleration in arm as the arm gets unloaded from the resistive drag force when it exits the 
water. Consequently, first the acceleration was computed in the fixed frame (afix) and then 
the gravity component was removed. Then, the local maximum on the norm of acceleration 
of the arm which is denoted by ||afix-g|| was detected (see Fig.2c) during the interval 
tωp++0.8ΔTC, tωp++ΔTC and considered as the beginning of the recovery phase (tREC). 
Two operators under supervision of an experienced coach performed the video analysis to 
extract the beginning of the pull and recovery phases for each stroke cycle. The comparison 
between the operators and inertial system merely carried out upon the cycles, which were 
detectable by camera. 
For each stroke cycle k, coordination was quantified based on the index of coordination (IdC) 
as defined in Chollet et al. (2000) by considering the instant of tPUL, tREC obtained for the Right 
and Left arms: 
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to evaluate the reliability of our video analysis. Statistical test and interclass correlation 
coefficient were used for test-retest reliability assessment. 
 
RESULTS: Fig.2 depicts a typical result of phase detection where the starts of pull and 
recovery phases found on right (Fig.2 a,b,f) and left arm (Fig.2 d,e,c) signals by applying our 
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system, and test-retest for one operator. With the video footage we had only 3 cycles per lap. 
Five laps out of 18 laps of each subject used for test-retest process. No significant difference 
between the test and retest video analysis was observed. The ICC(1,1) for test-retest of 
operator was 0.97. The comparison of IdC has been performed upon a broad coordination 
range (IdC=-16 to15.7) on video footage. 
 
Table 1: Mean ± Standard Deviation of difference in Cycle Duration (ΔTC), start of Pull (tPUL) and 
Recovery (tREC), in frames and IdC in %  

Difference ΔTC tPUL tREC IdC 
Operator1 - Operator2 0.0±0.7 -0.8±2.3 -0.2±0.9 1.8±4.2 

Operator1 - Inertial system 0.1±1.2 -0.7±3.1 -0.2±1.4 1.3±4.5 
Operator2 - Inertial system 0.2±1.1 0.0±3.6 0.0±1.7 -0.5±4.9 

Operator1 Test - Retest 0.0±0.5 -0.1±1.0 0.0±0.6 0.2±2.4 

1

, , , ,

, , , ,

k k k k

REC Left PUL Right REC Right PUL Leftk
k k k k
C Right C Left C Right C Left

IdC t t t t
T T T T

 
 

    
 

 
For each cycle stroke tPUL, tREC and IdC were estimated by inertial sensors and compared to 
values obtained by video analysis (reference system). A test-retest process has been done 
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considered the definition of Chollet et al. (2000). Based on their definition each arm stroke 
can be divided into four distinguishable phases i.e. entry and catch, pull, push and ultimately 
recovery. Distinctive features on kinematic signals discriminate these phases. A complete 
stroke cycle (ΔTC) has been determined as the time interval between two successive peaks 
(tωp+) of pitch angular velocity of arm (see also Fig.2a in Results). We considered that pull 
phase starts after a relatively motionless period of the arm in the catching phase. This period 
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beginning of the pull at each stroke has been determined by detecting this slope change. For 
this purpose primarily, the first negative peak (tωp-) of the S,pitch was detected. Then the 
change in the slope of both signals (S,pitch, aS,f), were detected in the interval tωp++0.2ΔTC, 
tωp- using the cumulative sum algorithm (Gustafsson & Firm, 2000). The beginning of the pull 
(tPUL) was computed as the average of detected instant on both signals.  
To detect the beginning of recovery phase, we considered that it starts with a local maximum 
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the gravity component was removed. Then, the local maximum on the norm of acceleration 
of the arm which is denoted by ||afix-g|| was detected (see Fig.2c) during the interval 
tωp++0.8ΔTC, tωp++ΔTC and considered as the beginning of the recovery phase (tREC). 
Two operators under supervision of an experienced coach performed the video analysis to 
extract the beginning of the pull and recovery phases for each stroke cycle. The comparison 
between the operators and inertial system merely carried out upon the cycles, which were 
detectable by camera. 
For each stroke cycle k, coordination was quantified based on the index of coordination (IdC) 
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Different types of tennis injury have been associated with play on different court surfaces 
and current knowledge of tennis player and court interactions is limited. This paper 
provides a brief overview of tennis injury incidence, player movements and the 
biomechanics of slips. The discussion proposes a new direction for assessing tennis 
player-surface interactions and outlines current work. It is envisaged that current work will 
contribute to the understanding of tennis player-surface interactions and be of practical 
use in the future regulation of tennis courts. 
 
KEYWORDS: tennis, player, court, friction, assessment. 

 
INTRODUCTION: A defining characteristic of tennis is that it is played on a variety of court 
surfaces (ITF, 2010). Indeed, Grand Slam tournaments (i.e. Wimbledon, Roland Garros, 
Australian Open and US Open) are played on grass, clay and acrylic surfaces. Competitive 
tennis events are regulated by the International Tennis Federation (ITF) which is responsible 
for developing technological aspects of tennis to improve safety, performance and 
participation while preserving the sports’ integrity. As such, a fundamental role of the ITF is to 
determine the rules and specifications of tennis to help regulate the sport (ITF, 2010). 
Properties of tennis courts used for competition, e.g. friction, energy restitution, dimension 
etc., must meet standards published by the ITF to ensure safety of use and consistency 
between competitions (ITF, 2010). For example, the ITF has implemented a court pace rating 
protocol that assesses ball-surface interactions of different court surfaces to categorise court 
pace (ITF CS 01/02; ITF, 2010). However, current knowledge of player-surface interactions 
with different court surfaces is limited (Miller, 2006). 
Player-surface friction is a dynamic quantity that depends on loading conditions at the shoe-
surface interface. The tennis shoe provides an important middle-link between player and 
court, as kinetic chain movements and task constraints originate from this interface. Shoe-
surface interactions are therefore an important consideration in tennis injury incidence. For 
example, courts providing a high coefficient of friction (COF) have been associated with knee 
and ankle joint injuries (Nigg & Sesser, 1988) whereas courts providing a low COF have 
been associated with slipping injuries (Biener & Caluori, 1977). Currently, there is limited 
research addressing how tennis players interact with tennis courts. This paper briefly reviews 
tennis injury incidence, player movements and slip biomechanics. The discussion will 
propose a new direction for assessing player-surface interactions and outline current work. 
Tennis injury incidence: Playing tennis, as participating in other sports, increases risk of 
injury due to physical exertion (Hjelm et al., 2010). Tennis injuries are commonly reported as 
overuse injuries or muscle and ligament strains and sprains, reflecting the various demands 
placed on anatomical structures (Bylak & Hutchinson, 1998). Indeed, tennis has a unique 
‘injury profile’ when compared to other sports (Pluim et al., 2006). However, tennis is an 
evolving sport. The ‘wooden racket era’ of tennis reflects a period when game style was 
characterised by style and finesse. At that time, injuries were predominantly to the hands and 
arms; injuries to the feet and back occurred less frequently and with lower severity (Frey, 
1969). Following the introduction of aluminium, oversized rackets in 1975, the ‘modern era’ of 
tennis refers to a game now characterised by more powerful strokes, higher rates of ball spin 
and more athletic court movements (Fernandez et al., 2006). The ‘modern era’ of tennis 
therefore has different physiological requirements of players and as such, frequently injured 
sites differ to those of the ‘wooden racket era’. In a recent review of 28 epidemiological tennis 
injury studies published between 1976 and 2005, Pluim et al. (2006) identified that the lower 
extremities now comprise the most frequently injured sites in tennis (31.1 – 67.0%), followed 
by the upper extremities (20.0 – 48.6%) and trunk (3.0 – 22.0%). Further, the review 

DISCUSSION: In this study we confirmed our hypothesis that inertial sensors can be used 
for automatic temporal phase detection during swimming. The high value of ICC indicates the 
consistency of our video analysis and thus, can be used as a reference to evaluate the 
proposed algorithm. Table 1 showed that the standard deviation of the difference between 
the two systems (video and inertial) was in accordance with standard deviation of inter-
operator difference. Therefore, the precision (expressed by Standard Deviation) of inertial 
system can be considered as good enough compared to video analysis. The mean difference 
of inertial system and video based system is always lower than 0.8 frames which is in the 
range of resolution of video analysis (i.e. 1 frame) and casts the accuracy of the inertial 
system. Table 1 shows also that the main source of difference between the two systems 
originates from detection of tPUL. This problem could come from confusion during video 
analysis to find out whether the hand is moving downward or downward and backward 
(Seifert et al., 2006). The later results in a propulsive force and considered as pull phase. 
Whilst, our algorithm is more reliable since we used the end of motionless part of the signal 
on two different signals (acceleration and angular velocity). Besides, our data capturing 
method enables us to address the problem of inter-cycle variability as we can have cycle to 
cycle analysis whereas the field of view of video based system (when calibrated for 3D 
analysis) is restricted to 2 or 3 cycles. Finally, our results showed that inertial system 
provides similar results to video analysis in a wide range of coordination.  
 
CONCLUSION: In this study we introduced a new system based on inertial sensors with 
dedicated algorithms that can be used easily by the coaches to assess automatically the 
main temporal phases of arm stroke in front-crawl. The proposed algorithms inspired from 
dynamics of swimming have shown to be enough accurate and precise and avoid the long 
and time-consuming video-analysis. Therefore, the method offers a promising technique for 
investigating the biomechanics of swimming. The system has been validated in different 
coordination modes and provided an error lower than 5% in IdC. To our knowledge, this is 
the first time that IdC is estimated automatically with inertial sensors.  
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