BIOMECHANICS OF THE PENALTY STROKE IN ROLLER HOCKEY

Mário A P Vaz¹, Nuno Ramos¹, João Abrantes², F Queirós de Melo³ and Filipe Conceição⁴

LABIOMEP, INEGI, Faculty of Engineering, Univ. Porto, Portugal¹
MovLab, Univ. Lusófona de Humanidades e Tecnologias, Lisboa, Portugal²
DEM, Univ. Aveiro, Aveiro, Portugal³
LABIOMEP, CIFID2D, Faculty of Sport, Univ. Porto, Portugal⁴

This paper describes a preliminary study on the biomechanics of the shot in roller hockey. This is a Portuguese sport having a most extensive prize list, where Portugal has been 15 times world champion, 20 European champions in senior male competition and won three world championships in senior female. Despite this impressive collection of titles, hockey continues to be the lesser studied sport, concretely regarding studies on biomechanics. The influence of sports equipment in the athlete’s performance and a detailed analysis of the main technical gestures had not motivated yet the researchers for detailed studies to enable their optimization. The purpose of this study was to characterize the mechanical properties of the stick (Aleu) and its influence on the shot power.

KEY WORDS: biomechanics, penalty stroke, roller hockey.

INTRODUCTION: The roller skate hockey is a team game where athletes run on wheels, which require high level of motor coordination. In roller (or rink) hockey the floor contact is materialized by eight supporting points having defined values of friction and rolling contact factors of the wheel/floor pair. Such constraints severely limit some of the athletes’ movements, this imposing alternative training and skill in terms of balance and handling in the player’s attitude. Also the interaction between the player and the ball is equivalent to a system of multi-body dynamics.

The shot is a muscular power movement demanding a great commitment to improve this motor action. During this movement a huge amount of muscle energy is generated in a short time interval, while the athlete tries to stand in perfect balance just on one foot. This action can be dynamically modelled in the scope of Applied Mechanics with the theorem of momentum, where the impulse on the ball during the shot represents the quantity of motion by the athlete’s body. It should be noted that the speed of the ball weighting some 0.144 kg topped by a senior athlete easily reaches 100km/h. In opposition to ice hockey the stick is never used as a spring like in the slap shot.

METHODS: In this work were involved 15 athletes from different positions and levels from 1st (7) and 2nd (8) Portuguese league, with the mean age of 24 ± 6 years old, 1.75 m ± 0.05 m of height and weighting 75 kg ± 8 kg, free for history of muscle injury. A high speed video camera Photron Fastcam SA 2, placed in a tripod in the sagittal plane and sampling at 1000 Hz was used to record the shooting trials performed by the athletes. This high sample rate was used to accurately visualize the deformation of the stick during the interaction with the ball and estimate the corresponding bending angle and contact time during the hit. A Stalker ATS radar (33.4 to 36 GHz) was placed behind the goal, in the frontal plane to the athlete, to collect the ball velocity data. Each athlete comprises 3 shot trials.

To better understand the stick behavior a numerical simulation of the stick/ball interaction, considered the stick as the deformable element, while the ball is assumed as perfectly rigid, was performed with Pseudo dynamic techniques. This study where used to simulate the mentioned stick-ball interaction during the energy transfer between the athlete and the ball. Alongside some experimental devices were constructed to assess the main characteristic parameters of the stick that influence the shot, i. e., weight, C.G. position and weight in balance. It should be noted that each athlete tries to adapt the stick to their physical
characteristics and function in the game. With the equipment designed and built in LOME - INEGI it was possible to completely characterize each of the stick samples and understand the options for each athlete. Figure 1 show the experimental layout designed to analyze the mass balance.

![Figure 1: Evaluation of mass balance of a stick.](image)

An experimental complementary analysis was also carried out to characterize the kinematics of the athlete motion during the performance of this technical gesture. For this preliminary study one athlete of the group was selected to participate on measurement program at the Laboratory of Movement Analysis - MovLab *Universidade Lusófona de Humanidades e Tecnologias* of Lisbon. A twelve VICON cameras setup synchronized with a force platform, AMTI-BP400600, were used to record the cinematic and kinetic data. The aim of this measurement was to identify the exact time instant when stick comes to the contact with the ball.

RESULTS: The table 1 shows the results obtained for the ball speed measurement in two different situations, with and without a short approach run for all the athletes.

<table>
<thead>
<tr>
<th></th>
<th>Terminal Ball speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ball speed (km/h)</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>SD</td>
</tr>
<tr>
<td>No approach run</td>
<td></td>
</tr>
<tr>
<td>2nd league (8)</td>
<td>90.3</td>
</tr>
<tr>
<td>1st league (7)</td>
<td>102.0</td>
</tr>
<tr>
<td>With approach run</td>
<td></td>
</tr>
<tr>
<td>1st league (7)</td>
<td>115.4</td>
</tr>
</tbody>
</table>

Figure 2 shows the different ways the athlete perform a penalty shot with a still ball. As can be seen the stick bends during the contact with the ball. The angle of bending measured was 18.5° (± 3.2°).

![Figure 2: Penalty shot during the beginning of contact stick/ball](image)

The athlete selected for the cinemetry measurements performed 17 penalty shots in the MovLab. In all the trials the ball speed and vertical force history were also recorded. In figure
3 is presented an image recorded during 7nd trial and a graphic presentation of the right hand acceleration during the shot execution. This graphic, was obtained with data collected during the 7th trial and clearly shows that the athlete hits the ball when his harm is not at maximum acceleration.

![Image](image.png)

Figure 3: Cinemetry measurements at MovLab and normalized record of right hand acceleration.

DISCUSSION: This work shows that these techniques are well adjusted to the objectives defined for this study. The assessment of the ball speed allows the control of the shot power for each athlete. The high speed video recording could be used to obtain the stick deformation during the gesture. The maximum deformation amplitude was imposed in a three point bending test to a stick instrumented with a strain gage and a load close to 80 N was measured. Using the equipment developed the stick can be fully characterized to investigate its influence in the shot kinetics. This way it will be possible to obtain a good estimation of the energy transferred to the ball by measuring the force, velocity and contact stick/ball duration, being the last the most difficult to evaluate. However, it was detected that the contact time stick/ball varies according to the way the athlete performs the shot, being some strategies more efficient than others. So, it will be also important to characterize in detail the strategy of muscle activation that promotes each athlete and record the effects and efficiency gains from their act. Same methodology should be followed to understand the contribution of the stick in the improvement of the shot and how their mechanical properties and mass distribution may be adjusted the characteristics of each athlete.

CONCLUSION: From the work performed it can be concluded that the experimental equipment allows an accurate characterization of the dynamic behaviour of the sticks. The study of the stick movement when striking the ball confirmed the importance of a good technique for efficient energy transmission to the ball. Kinematic analysis of the movement of each athlete allowed the evaluation of the ball/stick contact time, having also correlated the registered values with the terminal velocity of the ball. Future research will draw an additional study with electromyography to enable better understanding of the biomechanics of this movement and the strategy used by each athlete to obtain maximum performance. The movement of the stick should be defined considering its mechanical properties to promote a longer contact with the ball. This way a maximum energy transfer to the ball will be achieved. The continuity of this work should help develop new training methods to improve the shot and develop techniques that allow building sticks suitable for biomechanical characteristics of each athlete.

REFERENCES:

BETTER POSTURAL CONTROL DURING ACCURATE SHOOTING IN ELITE FEMALE BASKETBALL PLAYERS

Yen-Ting Wang1, Tsung-Li Tseng2, Lin Chi3, Chen-fu Huang4, Pao-Cheng Lin5 and Alex J.Y. Lee2

Graduate Institute of Coaching Science, National Taiwan Sport University, Taiwan1
Department of P.E., National HsinChu University of Education, Taiwan2
Physical Education Center, TaHwa Institute of Technology, Taiwan3
Department of P.E., National Taiwan Normal University, Taiwan4
Physical Education Center, YuDa University, Taiwan5

The purpose of this study was to evaluate the differences of postural control (PC) during accurate and inaccurate shooting in elite female basketball players. 21 female professional basketball players recruited as subjects. The PC was evaluated by the Accusway as sway radius, velocity, radial and 95% area of the center of pressure (COP) during standard penalty line shooting. The results showed that the COP sway area during accurate shooting was significantly smaller than during inaccurate shooting (74.0 ± 37.9 vs. 110.6 ± 49.1, \(p < .05 \)). Moreover, no significant differences were found between situations in the COP radius and velocity. This study found that during the accurate shooting, elite female basketball player had better PC which demonstrated that significant smaller COP sway area than inaccurate shooting.

KEY WORDS: balance control, center of pressure, sway area.

INTRODUCTION: Basketball is a popular sport worldwide with high-intensity and aggressive body contact game of an intermittent nature. In order to win the game, players have to compete against opponents and shoot the ball into the basket as many as possible. It is estimated that two major ways to win the scores were one-handed jump shot scoring (approximately 60%) and standing shooting (approximately 30%). Therefore, a variety of exercise skills and tactical strategies training programs were being implemented in an attempt to increase shooting performance for elite basketball players. Postural control (PC) has an important role in injury prevention and in athletic performance. PC is preserved through the dynamic integration of internal and external forces and environmental factors. Each sport requires different levels of PC implying that different sensorimotor processes were adopted to perform exercise skills and protect the neuromuscular system from injury. The skill requirements and competition demands of each sport were totally diverse and possessed different challenges to the sensorimotor PC than cumulatively influence the balance abilities of trained athletes. Take Gymnasts for example, they often perform leaping and tumbling skills in static position as well as barefoot on the ground, therefore, many of their skills require great strength and maximum joint ROM. Furthermore, Soccer players often perform lower extremity passing, dribbling, and shooting skills on variable turf conditions, therefore, many of their skills require great speed and better mobility. (Orchard, 2002). In contrast, basketball players often perform upper extremity passing, cutting, and shooting skills while wearing shoes on flat, stiff surfaces, therefore, the requirements of exercise skills and PC might be unique and not alike these aforementioned sports. It is believed that well PC during basketball shooting is very important, but to our knowledge, none of any studies comparing PC among accurate and inaccurate shooting in basketball players. Therefore, the purpose of this study was to compare the differences of PC during the accurate and inaccurate shooting in collegiate basketball athletes.

METHODS: Twenty collegiate level I basketball athletes (Age: 21.2 ± 4.0 yr, Ht: 173.3 ± 2.7 cm, Wt: 66.8 ± 6.2 kg; Training experience: 8.3 ± 2.7 yrs), without lower limb injury and right dominant limb, volunteered as participants. All participants received professional basketball training. The authors acknowledge the support from the company MRA (Photron), in the person of Engineer Pedro Rebelo, and the facilities given by the technical team of hockey's FC Porto in the person of his coach Franklin Pais.