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Coordinated fast movements are characterised by an effective intermuscular interaction. 
The result of this intermuscular coordination is a straight path towards a given target. The 
speed profile of the movement is "bell-shaped", so that a movement with a smooth stop 
results (an overshoot is not observed). In this work an artificial neural network acts as a 
controller of an idealised human arm during a catching movement. The model arm is 
taken from the literature with minor changes. The nervous system is modelled by an 
artificial neural network (ANN). It consists of a sensory map that is connected to a motor 
map by an intermediate associative layer. The results demonstrate that simple neural 
networks in interaction with musculoskeletal dynamics are able to model the ability of the 
central nervous system to coordinate fast movements. 
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IN'TRODUCTION: Coordinated fast movements are basic motor actions. They can be easily 
described by measuring speed, force and electromyographic data. This class of movements 
involve nearly all aspects of motor control - from vision and proprioception (sensor input), to 
associative memories and motor output, to the muscles and joint kinematics. In the literature 
there is no accepted comprehensive model to describe these processes. 
In this work the control of a fast movement is modelled. It is a voluntary movement of the arm 
to catch an object (a thrown ball). Fast movements imply a duration of a few hundred 
milliseconds. Considering such time intervals, visual feedback can be neglected during the 
movement, since visual interpretation takes at least a hundred milliseconds. Even 
proprioceptive feedback is not considered to play a role in fast ballistic movements 
(Hollerbach, 1982). Hence, we use a feed forward model to control the movement. 
Reaching movements towards a given target are well studied (Abend et al. 1982; Gottlieb et 
al. 1989; Jordan et al. 1994; and others). Two observed facts are important. First the hand 
path is nearly straight and second the speed profile is "bell-shaped". These features seem to 
be a result of the muscular and neuro-muscular dynamics and not of neural optimisation 
(Karniel et al., 1997). In accordance with these results we use a Hill-type non-linear muscle 
model. For fast movements non-linearity due to muscle fatigue is ignored. There are many 
complicated schemes of motor control discussed in the literature . It will be shown that with a 
biological orientated model of the muscular system, a typical movement can be learned and 
controlled by a very simple feed forward control exciting the muscles with rectangular pulses 
to the agonist and antagonist (Gottlieb et al., 1989; Riener et al., 1996). In the model 
presented here, an algorithm to learn the parameters of coordinating and activating the 
involved muscles is proposed. A simple model consisting of a feed forward control artificial 
neural network, a Hill-type non-linear muscle model and learning from knowledge of results 
are described. 

METHOD: The model consists of an artificial neural network, which gets data from the 
outside and calculates muscle excitation. A musculoseletal model transforms these data by a 
Hill-type non-linear muscle model into forces that act on joints, producing the actual 
movement. The result (ball caught / not caught) of this movement is fed back to the ANN and 
processed by an associative inner layer. To keep the sensory analyser simple, we use the 
parameters speed of ball, size and throwing angle directly after applying minor filters to 
simulate sensory fuzziness. The model is shown schematically in Figure 1. 



artificial neural 
network 

musculoskeletal 
system 

activation contractio 
coupling 

4 joint kinematics L 

Figure 1 - Schematic diagram of the ANN and 
the musculoskeletal system (ni: neural input, 6: 
relation between force and velocity from Hill's 
model, 6,: parallel elastic properties, Ks: 
contractile properties, Fo: normalised 
hypothetical force, F,: force acting on the joint). 

The artificial neural network: The input 
is mapped on the sensory layer, which is 
a Kohonen map (Kohonen, 1987; 
Obermayer, 1992; Gruber et al., 1997). 
The input is transformed by a feed 
forward net to the motor layer, which is 
responsible for the excitation of the 
muscles (Lemon, 1988; Ritter et al., 
1990). Based on the short duration of 
the movement the information about the 
performance is presented only after the 
execution of the movement (Hollerbach, 
1982; Keifer et al., 1994). The sensory 
information is analysed and the weights 
of the associative neural net which 
connects the sensory layer and the 
motor layer are changed according to 
the error. The shape of the control pulse 
is not changed during the simulation. 
The timing and the amplitude of the two 
pulses controlling the agonist and 
antagonist are changed in accordance to 
the error and learning parameters of the 
ANN. 

The musculoskeletal system: The 
musculoskeletal system acts as a 
translator of the pulses given by the 
artificial neural network. The human arm 
has many muscles that act on a single 
joint. To simplify the model we use a 
reduced number of muscles and 
calculate the torque at each joint by the 
sum of the forces of the muscles that act 
on this joint. For each muscle a Hill-type 
non-linear model is used (Winters, 
1990). For the simulation the parallel 
elastic components were not taken into 
consideration, because they have no 
effect on fast movements. The 
simulation stops at the end of the 
catching movement. The steady state, 
where the parallel elastic elements 
cause a drift towards the resting point of 
the muscle is not important for this work 
and therefore not modelled. 



The learning algorithm: The 
sensory data is mapped to the 
sensory layer in a self- 
organized process, using 

ANN Kohonen's algorithm. The 
output of the sensory layer is 
projected to a feed forward 
net, which acts as an 
associative layer. In this step 
only the rule of Hebb plays an 
important role (Hebb 1949). 
The information is then 
mapped on the motor map, 
which is another self 
organizing map (SOM). The 
output of the motor map are 
excitation pulses defining the 
physical movement. The 
output error is then fed back to Figure 2 - Schematic diagram of the ANN and the associative layer and the 

the learning algorithm. affected weights are updated - 
(Figure 2). 

The environment: The relevant parameters for the simulation are defined by speed and 
angle of the ball, the distance between thrower and catcher and the abstracted model of the 
human arm. OpenlnventorTM, a three-dimensional graphical library, is used for the 
visualisation. 'The simulation area, consisting of a thrower, ball, catcher and the movement of 
ball and catcher, is rendered. The joints of the arm are drawn using spheres (Figure 3). 

Figure 3 - Sample screenshot of the simulation area. A human arm with three 
joints and a set of muscles is modelled. The movement of the ball and the arm is 
rendered. 



RESULTS AND DISCUSSION: The model discussed above is able to abstract adequately 
complicated natural processes needed to generate a controlled fast movement with a "bell- 
shaped" speed profile. Only rectangular excitation pulses are needed to control the non- 
linear musculoskeletal system. It is not necessary for the nervous system to calculate the 
trajectory of the ball or the trajectory of the hand catching the ball. A typical catching 
movement is achieved by a few simple parameters that are learned by a self-organizing 
leaming algorithm. This simplifies the controller and is physiologically supported through the 
hierarchic control of pattern generators (PG's). The rectangular pulses are an adequate 
simplification of the large set of control shapes that can be observed in biological systems. 
The proposed control scheme works well with proper pre-processed parameters. With a Hill- 
type nonlinear muscle model the desired direct movement to the target without mechanical 
overshoot and a smooth stop at the end can be achieved. 

CONCLUSION: 
Movement analysis yields information on the kinematics, kinetics and neuromuscular aspects 
of human motion. With our technical instrumentation we describe and analyse the output of a 
highly complex system without a thorough consideration of the neural control mechanisms. A 
comprehensive physiologically based model capable of representing the complex motor 
control mechanisms in the human nervous system that explains adaptive leaming is needed. 
The motor learning process depends on many parameters. Each step from sensor input to 
motor output plays an important role in learning a target-oriented movement. The presented 
model solves the problem of redundant information and appears to be an adequate model to 
describe the control of coordinated fast movements. The computational capabilities of the 
used mapping algorithm are demonstrated in sensory mapping and motor control. The model 
has a hierarchical structure. The relevant parts are separated and can be easily adapted and 
gradually improved to suit other purposes. The model can be improved to describe slow 
movements by adding sensory feed back mechanisms during the movement phase. The 
model constitutes a valuable step towards understanding of how the organisation of higher 
levels of synaptic modification rules can occur without the need for extensive instruction 
beyond exploratory sensory and motor experience. 
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