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INTRODUCTION 
Despite a near continuous presence in space for the past 30 years, very little 

is understood about how humans adapt their motor control processes to the 
novel environment of microgravity. Opportunities to investigate how 
humans adapt their motor behavior to weightlessness have been fairly 
limited. Although several studies have been conducted during space flight, 
which have made use of a video-based motion system to record movement, 
these studies have only involved one or two subjects (Massion et al., .1993; 
Roll et al., 1993; Clement et al., 1984). Furthermore, collecting human 
movement data during space flight is extremely costly in terms of time and 
financial resources. One supplement to these costly investigations is the use 
of dynamic computational models of the human body which utilize 
optimization routines to determine optimal (skillful) movement patterns. 
Removing gravity from the model's landscape enables investigators to 
determine the necessary control adaptations to weightlessness during a 
particular movement. 

Previous work in our laboratory has focused on understanding how 
weightlessness impacts the ability of subjects to perform rapid arm raises 
during a variety of experimental conditions. In particular, we were interested 
in how the removal and subsequent restoration of the foot support surface 
alters the optimal segmental coordination used to perform the movement in 
microgravity. In addition to our ongoing space flight experiments, we 
addressed this issue through the development of a 3 segment dynamic 
computational model which employed optimization routines. Our results 
indicate that optimal segmental coordination needs to be modified during 
movement in weightlessness and therefore suggest that humans must learn 
new patterns of coordination to accomplish their movement objectives. 



METHODS 
We used a simple mathematical model of the human body to simulate 

the bilateral arm raise task, and obtained three minimal-movement-time 
solutions: a) with normal gravitational force (1G) while on the ground, 
b) with OG while free floating, and c) with OG but with the feet attached to 
the support surface. These environmental conditions were identical to the 
ones experienced by our subjects during the space flight experiments. ThrQ 
rigid segments represented the entire body and movement was allowed 
only in the sagittal plane. The three segments were: 1) the feet, 2) the body 
(head, torso and legs) and 3) the arms. There were two revolute joints, one 
between the feet and body segments, which simulated the ankle joint, and 
one between the body and arms, which simulated the shoulder joint. The 
feet-to-ground interaction was modeled with two two-dimensional springs, 
positioned one at the heel and one at the toes, which allowed the feet to 
either leave or slide along the ground (Anderson, 1995). All conditions used 
identical anthropometric and strength parameters (Winter, 1990) except for 
the mass and inertia of the feet in the OG attached condition. There, the 
feet's mass and inertia were set to those of the Space Shuttle. 

Kane's method of describing dynamical systems was used to derive the 
equations of motion (EOM). The software package Autolev (OnLine 
Dynamics Inc.) was used to derive the model's EOMs, and to produce C 
code for the forward simulation. The simulation code was modified to accept 
joint torque values in the parameterized form (Pandy et al., 1992) of eight 
control nodes for each joint and to fit our optimization routines. Linear 
interpolation was used within nodes for the small time steps required by 
the integrator. 

In general, the equations of motion governing our model's motion have 
the following form:{A(q)} ; + C(q,g) + G(q) +T=O 

Where: {A(q)} is the mass matrix; q is the generalized coordinates vector; - 
C(q,q) is the Coriolis and centrifugal forces vector G(q) is the gravitational 
forces vector; ?;is the joint torque vector. 



The mass matrix is always symmetric and therefore invertible. Thus, 
the above equations can be solved for the accelerations of the generalized 
coordinates, used to describe the model. 

To limit the range of motion of the free-floating model's ankle joint, 
within physiological levels, we modeled the ankle joint ligaments with two 
rotational springs and dampers. Those springs were very similar to the 
vertical feet-to-ground springs and the following equation describes their 
torque magnitude: Ti=0.5336 . e lo3.  cot. { (8) 
- 

Where: 5 (0) is the damping force, given by: (03=11(1+10 . e500'(e'u 
@,,, is the "zero-angle" of the ith ligament; €Ii, 9 'are the angular position 

and velocity of the irh ligament; 5 Ol is a constant which causes a steep rise 
of the damping torque to occur within 0.05 radians (about 3 degrees) of the 
maximum range of motion of the joint. 

The performance criterion to be minimized was time (J = t) to complete 
the task. The movement was defined by the segments' initial state: 
anatomical position with no velocity, and final state: segment angles for 
the 1G and OG attached, but joint angles for the OG free (described as the 
optimal solution is equality constraints: ). A set of inequality constraints 
(a) was used to convey the joint torque maximum limits to the optimum 
control algorithm. For the solution of these parameter optimization problems 
we used a sequential quadratic programming routine which required first 
order derivatives of the performance and constraints. Because of the 
complexity of the EOMs, we computed all derivatives numerically. 

RESULTS AND DISCUSSION 
Comparison of the three solutions reveals the effect of gravity and ground 

reaction force on the dynamics and optimum control of the movement (see 
figures 1, 2). The OG models took less time to complete the task, with the 
free floating model able to perform slightly better than the attached one. 
These results indicate that the greater the external forces the poorer the 
performance. 
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When comparing the three models, it is important to remember that 
successful completion of the task involves the final state of the arms, body 
and feet. Because of the nature of the task, the OG free floating position had 
slightly different segment state requirements. This could account for the 
slight performance difference, but should have had no effect on the 
coordination. The minimal differences between the two OG conditions in 
performance, shoulder joint torque and arms kinematics indicate that the 
large differences in the ankle joint torque histories had minimal effect on 
the arms' movement (Figures 2,3,5). We concluded that the main effect of 
the increased ankle torque during the OG attached model simulation was 
the control of the body's state (Figures 2,4,6). 
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Figure 3. Angular displacement of the arms segment. The 1G condition 
reached horizontal at the same time as the other conditions, but total task 
time was increased relative to the OG conditions. 
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Figure 4. Angular displacement of the body segment. Although the initial 
position of the OG free floating model is of no importance, notice that its 
final position was slightly forward, unlike the other conditions 
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Figure 5. Angular velocity of the arms. The OG conditions produced the 
highest arms velocity. Notice that the 1 G condition was also able to satisfy 
the arms' velocity final-state requirement nearly at the same time as the 
other conditions. 
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Figure 6. Angular velocity of the body. The body segment experienced 
low angular velocities for all conditions. Notice the sudden drop in the free 
floating condition at maximum plantarflexion. 

During the 1G condition, the positive acceleration of the arms and the 
control of the body became laborious. The additional gravitational forces 
acting on the masses combined with the possibility of the feet coming off 
the ground, particularly during dorsiflexion, further constrain the model's 
performance. Although, during the 1G solution the feet did not come off 
the ground (Figure 7) and the atms segment reached the horizontal at a 
similar time with the other conditions (Figure 3), the body segment took 
longer to satisfy the necessary final states (Figures 4, 6). The differences 
observed during the later stages of movement in the joint torque histories 
between the 1G and OG attached condition are attributed to the 
ineffectiveness of the ankle torque to control the massive body under gravity. 
It should be noted that during the braking of the arm, due to the nature of 
the task, the gravitational force assists the shoulder joint torque. 



Figure 7. Angular displacement of the feet. There was no movement during 
the OG attached model simulation and almost none during the 1G model 
simulation. The free floating simulation used maximum plantar flexion early 
in the task (0.075 secs). 

In order to closely match human subject quiet stance in the presence of 
gravity and ground, and to allow for larger dorsiflexion torques, we chose 
the initial position of the body to be slightly leaning forward, so that the 
center of pressure (COP) was under the middle of the foot (Figure 8). 
Previous examination of two segment optimal solutions with the initial 
COP position under the ankle joint (body vertical) revealed similar segment 
kinematics, but reversed ankle joint torque patterns (Kalakanis and Abraham, 
1996). This indicates that small changes in the initial stance of our human 
subjects could account for some of the experimental variability we observe 
in the electromyographic activity of the shank muscles. 
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Figure 8. COP fore-aft displacement for the tG solution. Consistent with' 
human subject experiments the COP for the t G condition stayed well within 
the boundary of the foot during the arms movement. 

CONCLUSION 
Our model was simple. It did not include excitation/activation dynamics, 

muscle dynamics (force-velocity-length relations), geometry of joints, line 
of action of the muscles, knees, hips, and other parameters which could 
have improved its fidelity. However, it allowed us to effectively study the 
influence of external forces on its optimal coordination. The simulations 
performed indicate that manipulating the gravitational environment and 
the availability of ground reaction forces require adaptations in segmental 
coordination to optimally complete the task. It is plausible to suggest that 
when humans encounter the microgravity environment of space flight they 
also must learn new coordination modes which enable them to improve 
their performance. Our results show that mathematical modeling of human 
movement can lead to important insights into how ground reaction forces 
and changing levels of gravity influence movement coordination. 
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