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INTRODUCTION

Despiteanear continuouspresencein spacefor thepast 30 years, vary little
is understood about how humans adapt their motor control processesto the
novel environment of microgravity. Opportunities to investigate how
humans adapt their motor behavior to weightlessness have been fairly
limited. Although several studies have been conducted during spaceflight,
which havemade use dof avideo-based motion system to record movement,
these studies have only involved one or two subjects(Massion et d., 1993;
Roll et al;,1993; Clement et a., 1984). Furthermore, collecting human
movement data during space flight is extremely codtly in terms of timeand
financial resources. Onesupplement to these costly investigationsisthe use
of dynamic computational models of the human body which utilize
optimization routinesto determine optimal (skillful) movement patterns.
Removing gravity from the model's landscape enables investigators to
determine the necessary control adaptationsto weightlessness during a
particular movement.

Previous work in our laboratory has focused on understanding how
weightlessnessimpacts the ability of subjectsto perform rapid arm raises
during avariety of experimenta conditions. In particular, we wereinterested
in how the remova and subsequent restoration of the foot support surface
atersthe optima segmental coordination used to perform the movement in
microgravity. In addition to our ongoing space flight experiments, we
addressed this issue through the development of a 3 segment dynamic
computational model which employed optimization routines. Our results
indicate that optimal segmental coordinationneeds to be modified during
movement in weightlessnessand therefore suggest that humans mugt learn
new patterns of coordination to accomplishtheir movement objectives.
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METHODS

We used a simple mathematical model of the human body to simulate

the bilateral armraise task, and obtained three minimal-movement-time
solutions: &) with normal gravitational force (1G) while on the ground,
b) with GG whilefreefloating, and c) with GG but with thefeet attached to
the support surface. These environmental conditions wereidentical to the
onesexperienced by our subjectsduring the spaceflight experiments. Three
rigid segments represented the entire body and movement was allowed
only in thesagittal plane. The three segmentswere: 1) thefeet, 2) thebody
(head, torso and legs) and 3) the arms. There were two revolute joints, one
between the feet and body segments, which simulated the ankle joint, and
one between the body and arms, which simulated the shoulder joint. The
feet-to-ground interaction was modeled with two two-dimensional springs,
positioned one at the heel and one at the toes, which dlowed the feet to
either leave or dide dong the ground (Anderson, 1995). All conditions used
identical anthropometric and strength parameters (Winter, 1990) except for
the mass and inertia of the feet in the GG attached condition. There, the
feet's mass and inertiawere set to those of the Space Shuittle.

Kane’s method of describingdynamical systemswas used to derivethe
equations of motion (EOM). The software package Autolev (OnLine
DynamicsInc.) was used to derive the model's EOMs, and to produce C
codefor theforward simulation. Thesimulation code was modified to accept
joint torque valuesin the parameterizedform (Pandy et al., 1992) of eight
control nodes for each joint and to fit our optimization routines. Linear
interpolation was used within nodes for the small time steps required by
the integrator.

In general, theequationsof motion governing our model's motion have
thefollowing form:{A(q)} § t Cig.g) T G(g) +T =0

Where: {A(g)} isthe mass matrix; g isthe generalized coordinates vector;
C(g,q) istheCoriolis and centrifugal forces vector (g isthegravitational
forcesvector; T'is thejoint torque vector.



The mass matrix is always symmetric and therefore invertible. Thus,
the above equations can be solved for the accelerations of the generalized
coordinates, used to describe the model.

To limit the range of mation of the free-floating model's ankle joint,
within physiological levels, we model ed the anklejoint ligaments with two
rotational springs and dampers. Those springs were very similar to the
vertical feet-to-ground springs and the following equation describes their
torque magnitude: 7=0.5336 . e " j(". @ . £(6)

Where: §, (0) isthe damping force, given by: I;(G )=1/(1+10 « ™™ e
¢, isthe ' zero-angle" of the i* Ilgament 8., w, 'are the angular position
and velocity of the i* ligament; & 0, is aconstant which causes asteeprise
of the damping torqueto occur within 0.05 radians (about 3 degrees) of the
maximum range of motion of thejoint.

Theperformancecriterion to be minimized wastime (J=t) to complete
the task. The movement was defined by the segments' initial state:
anatomical position with no velocity, and final state: segment angles for
the 1G and GG attached, but joint anglesfor the GG free (described as the
optimal solution iseguality constraints: ). A set of inequality constraints
(&) was used to convey the joint torque maximum limits to the optimum
control algorithm. For the solution of these parameter optimization problems
we used a sequential quadratic programming routine which required first
order derivatives of the performance and constraints. Because of the
complexity of the EOMs, we computed all derivatives numerically.

RESULTSAND DISCUSSION

Comparison of thethree solutions reveal sthe effect of gravity and ground
reaction force on the dynamics and optimum control of the movement (see
figures 1, 2). The GG models took |ess time to complete the task, with the
free floating model able to perform dlightly better than the attached one.
These results indicate that the greater the external forces the poorer the
performance.
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Figure 1. Shoulder torgue. Minimal differences between the G conditions.
The 1G condition was significantly different especially during the later part
of the braking phase.
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Figure 2. Ankle torque. Varied across all conditions. Notice the limited
dorsiflexion torque of the 1G model,
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When comparing the three models, it is important to remember that
successful completion of thetask involvesthefinal stateof the arms, body
and feet. Becauseof thenatureof thetask, the GG freefloating position had
dightly different segment state requirements. This could account for the
dlight performance difference, but should have had no effect on the
coordination. The minimal differencesbetween the two GG conditionsin
performance, shoulder joint torque and arms kinematics indicate that the
large differencesin the ankle joint torque histories had minimal effect on
thearms movement (Figures2, 3, 5). We concluded that themain effect of
the increased ankle torque during the GG attached model simulation was

the control of the body's state (Figures2, 4, 6).
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Figure3 Angular displacement of the arms segment. The 1G condition
reached horizontal at the same time as the other conditions, but total task

time was increased rel ative to the G5 conditions.
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Figure4. Angular displacement of the body segment. Although theinitia
position of the GG free floating modd is of no importance, notice that its
final position was dightly forward, unlike the other conditions
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Figures. Angular velocity of the arms. The GG conditions produced the
highest arms velocity. Noticethat the 1G condition wasalso ableto satisfy
the arms’ velocity final-state requirement nearly at the same time as the
other conditions.
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Figure 6. Angular velocity of the body. The body segment experienced
low angular velocitiesfor all conditions. Noticethe suddendropin thefree
floating condition at maximum plantarflexion.

During the 1G condition, the positive acceleration of the arms and the
control of the body becamelaborious. The additional gravitational forces
acting on the masses combined with the possibility of the feet coming off
the ground, particularly during dorsiflexion,further constrain the model's
performance. Although, during the 1G solution the feet did not come off
the ground (Figure 7) and the arms segment reached the horizontal at a
similar time with the other conditions (Figure 3), the body segment took
longer to satisfy the necessary final states (Figures 4, 6). The differences
observed during the later stages of movement in the joint torque histories
between the 1G and OG attached condition are attributed to the
ineffectivenessaf theankletorqueto control themassivebody under gravity.
It should be noted that during the braking of the ar mdue to the nature of
the task, the gravitational force assists the shoulder joint torque.
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Figure7. Angular displacementof thefeet. Therewasno movement during
the GG attached model simulation and almost none during the 1G model
simulation. Thefreefloating Smulation used maximum plantar flexion early
in the task (0.075 secs).

In order to closely match human subject quiet stancein the presence of
gravity and ground, and to allow for larger dorsiflexion torques, we chose
theinitia position of the body to be dightly leaning forward, so that the
center of pressure (COP) was under the middle of the foot (Figure 8).
Previous examination of two segment optimal solutions with the initial
COP position under theanklejoint (body vertical) reveal ed similar ssgment
kinematics, but reversed anklejointtorque patterns(iKalakanis and Abraham,
1996). Thisindicates that small changesin theinitial stanceof our human
subjectscould account for someof theexperimenta variability weobserve
in theelectromyographic activity of the shank muscles.
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Figure8 COPfore-aft displacement for the 1G solution. Consistent with'
human subject experimentsthe COPfor the L G condition stayed well within
the boundary of thefoot during the arms movement.

CONCLUSION

Our model wassimple. It did not includeexcitation/activation dynamics,
muscledynamics(force-vel ocity-length relations), geometry of joints, line
of action of the muscles, knees, hips, and other parameters which could
haveimproved itsfidelity. However, it dlowed us to effectively study the
influence of external forces on its optimal coordination. The simulations
performed indicate that manipulating the gravitationa environment and
theavailability of ground reactionforces require adaptationsin segmental
coordination to optimally complete thetask. It is plausibleto suggest that
when humansencounter the microgravity environment of spaceflight they
also must learn new coordination modes which enable them to improve
their performance. Our results show that mathematical modelingof human
movement can lead to important insightsinto how ground reaction forces
and changing levelsof gravity influence movement coordination.
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