BIOMECHANICS IN TEACHING AND COACHING - SYSTEMATIC APPROACHES TO THE IDENTIFICATION OF MECHANISMS IN PERFORMANCE AND INJURY

Adrian Lees
Sports Biomechanics Laboratory, School of Human Sciences, Liverpool Polytechnic, Liverpool, U.K. L3 3AF

INTRODUCTION

As biomechanists we are concerned with generating, synthesising and organising biomechanical knowledge for the student and the coach. What may be organised knowledge from the point of view of the biomechanist, may appear as random information to the coach. To help in the generation and conveyance of effective knowledge a systematic approach is required. This systematic approach involves setting out a framework or model which provides direction in the collection of biomechanical data, and which leads naturally to a consideration of the underlying mechanisms governing performance. The purpose of this paper is to identify and illustrate several systematic approaches to achieve this goal.

THE NEED FOR A SYSTEMATIC APPROACH

The human body can be considered as a number of linked segments. Each segment has several degrees of freedom and each degree of freedom can be described by several kinematic descriptors. The number of descriptors of a sports skill can therefore exceed several thousand. In many biomechanical analyses attempts are made only to evaluate a selection of these descriptors. This tendency has been reinforced by the ability of biomechanical equipment to generate vast quantities of data and the enthusiasm of researchers and students to collect data perhaps in the belief that this represents scientific progress. It has also been reinforced by the increase in biomechanical profiling of elite sport, essentially the compilation of a descriptive data base, often from prestigious competitions such as Olympic and World championships, leading credibility to the approach.

The mechanical characteristics presented as key variables in any study may be selected for several reasons. Perhaps the biomechanist thinks they are important (e.g. Elliott, et al. 1986); perhaps the coach has requested them (e.g. Rash et al., 1990); perhaps they are an expression of an underlying mechanisms (e.g. Takei, 1989), or perhaps they are measured simply because they are there to be measured (e.g. Miller, et al., 1989). The fact that little information is given to explain why these variables are measured is an indication that there is little by way of a systematic approach to the analysis of a sports event or action. There is a gap in our biomechanics methodology if reference cannot be made to underlying guiding principles in the biomechanical analysis of a sports event or action.

This is not to say that systematic or model approaches are not available, but that they are rarely acknowledged and poorly used. There are several which can be identified, classified and modified from the literature.
TECHNIQUE MODEL

The term 'technique' used with reference to sports skills is understood to refer to the 'way of doing' or 'way of performing' the skill. There are many published articles which deal with the technique of performance for different sports. These range from those sports specific to the more biomechanical. A good example of the sport specific is that given by Tidow (1990) referring to the model technique of the long jump event. He divides the event temporally into several phases and describes the positions and actions that are characteristic of good technique for each phase. The phases follow classical divisions of the event but are amplified with the addition of sections specifically on the preparation for take off (the last few strides), landing and alternatives for flight styles. Each of these phases is clearly described and easy to follow. A good example of a biomechanical technique analysis is the report emanating from the analysis of the same event in the Seoul Olympic games (Nixdorf and Bruggemann, 1990). They defined a model of the technique which consisted of the usual four phases of approach, take off, flight and landing. They conducted three dimensional filming of the long jump and from an analysis of this reported data on variables such as stride lengths and frequencies and velocities over the last four strides. In addition they reported data on velocity and angle of projection, and various other data on body lean and time of foot contact. They also correlate numerous variables and found relationships between velocity and distance variables. An innovation introduced into their report was a section on interpretation by coaches. Generally coaches asked for even more data than was presented, an indication that they were dissatisfied by the quantitative data. They were however excited by the attempt to draw links between variables and felt this was the most important part of the report.

These articles are typical of those reported in many other sports events both within athletics and in other areas. They serve to highlight a traditional approach to the breakdown of a skill. An analysis has taken place in that it has been broken down into constituent parts, but this breakdown does not necessarily lead to an understanding of why these actions described are actually used. The breakdown of an event into its phases and a description of each phase in verbal or numerical terms is a classic approach to the analysis of technique. As a structured framework this constitutes a model which guides the analysis of technique. This approach is rarely acknowledged, or referred to explicitly in most technique analyses. It is curious that the systematic breakdown of an event is not acknowledged as such. It makes the process of teaching and learning more difficult because there is no framework from which to build the general principles of analysis. Students and coaches must be exposed to many instances of technique analysis before they are able to abstract the framework which is implicitly used. Not only is this a most inefficient way of teaching applied biomechanics but it also has a more serious limitation. The assumed model which is abstracted from common usage does not lead to a demand for a rationale, explanation or identification of underlying mechanisms of operation which in turn can lead to a fuller understanding of the skill. A model can be easily specified which poses demand such an extension, and this is illustrated below.

As a model, it requires an approach, the takeoff, the flight and landing sequence. Its variables are gravity (CG) during the performance of the performers, while this is free with students and coaches, they observe and measure some important advances in understanding sports skills. It is easy to see that 1) it is closely related to a basis for coaching; and 2) it is related to the explanation of the outcome of performances necessarily lead to a good outcome of performances

OUTCOME MODEL

The outcome of the technique is the performance outcome. The factors which these will be mechanical, or even physiological. Unlike attempts have been made to perform in the past, and has widely.

While in his many works a has not developed beyond a
TECHNIQUE MODEL

LEVEL DETAIL
1. event
2. phase
3. phase descriptions
4. rationale/mechanisms

As a model, it requires a breakdown of the event into its temporal phases. For example, the approach, the takeoff, the flight and landing for the long jump. Each phase then requires a description, as given by Tidow (1990) for example. However, the model now demands that the actions described are also explained. For example, the lowering of the total body centre of gravity (OG) during the last few strides in the long jump is an observable feature of good performers, while this is frequently described it is rarely explained. As biomechanists dealing with students and coaches it is imperative that we are able to identify the reasons for the things we observe and measure if we are to foster an understanding of a sports skill. There are some important advantages and disadvantages of this technique model as a vehicle for understanding sports skills. The advantages are (1) it is spatial, temporal and rational, in that is easy to see, it is sequential and it is logically based on what athletes are observed to do; (2) it is closely related to a coaches view of an event, understandably as it is used widely as a basis for coaching; and (3) with the addition of the fourth level, the model focuses attention on the explanation of the described actions. The disadvantages are (1) it fails to explain the outcome of performances in that even if all the described actions are correct it will not necessarily lead to a good outcome; (2) fails to give direction to speed of movements; and (3) fails to give direction to physical characteristics such as muscle strength and muscle power output.

OUTCOME MODEL

The failures of the technique model lead naturally to consider how they might be overcome. The outcome of the performance is a clear focus for attention from both biomechanicians and coaches. The factors which are related to successful performance can be identified. Initially these will be mechanical, but are likely to go further by considering the biomechanical and even physiological. Unlike the technique model, which has not had a formal structure, attempts have been made in the literature to explicitly identify the factors which affect performance outcome. This approach is largely due to the work of Hay (1975) who introduced and has widely used a 'deterministic model' to describe performance outcome. While in his many works over the last decade or so the detail of the model has developed, it has not developed beyond a hierarchical structure of dependent factors. Despite the fact that

and to refer to the 'way of articles which deal with the sports specific to the given by Tidow (1990) the event temporally into characteristic of good event but are amplified off (the last few strides), already described and easy to report enminating from and Bruggemann, 1990). four phases of approach, of the long jump and paths and frequencies and on velocity and angle of contact. They also correlate a distance variables. An by coaches. Generally that they were stimulated by the attempt to draw the report. events both within athletics the breakdown of a skill. constituent parts, but this actions described are scription of each phase in technique. As a structured technique. This approach is analyses. It is curious that makes the process of from which to build the ed to many instances of which is implicitly used. forms it also has a common usage does not underlying mechanisms of all. A model can be easily

It is curious that

THEME MECHANIS

1. event
2. phase
3. phase descriptions
4. rationale/mechanisms

As a model, it requires a breakdown of the event into its temporal phases. For example, the approach, the takeoff, the flight and landing for the long jump. Each phase then requires a description, as given by Tidow (1990) for example. However, the model now demands that the actions described are also explained. For example, the lowering of the total body centre of gravity (OG) during the last few strides in the long jump is an observable feature of good performers, while this is frequently described it is rarely explained. As biomechanists dealing with students and coaches it is imperative that we are able to identify the reasons for the things we observe and measure if we are to foster an understanding of a sports skill. There are some important advantages and disadvantages of this technique model as a vehicle for understanding sports skills. The advantages are (1) it is spatial, temporal and rational, in that is easy to see, it is sequential and it is logically based on what athletes are observed to do; (2) it is closely related to a coaches view of an event, understandably as it is used widely as a basis for coaching; and (3) with the addition of the fourth level, the model focuses attention on the explanation of the described actions. The disadvantages are (1) it fails to explain the outcome of performances in that even if all the described actions are correct it will not necessarily lead to a good outcome; (2) fails to give direction to speed of movements; and (3) fails to give direction to physical characteristics such as muscle strength and muscle power output.

OUTCOME MODEL

The failures of the technique model lead naturally to consider how they might be overcome. The outcome of the performance is a clear focus for attention from both biomechanicians and coaches. The factors which are related to successful performance can be identified. Initially these will be mechanical, but are likely to go further by considering the biomechanical and even physiological. Unlike the technique model, which has not had a formal structure, attempts have been made in the literature to explicitly identify the factors which affect performance outcome. This approach is largely due to the work of Hay (1975) who introduced and has widely used a 'deterministic model' to describe performance outcome. While in his many works over the last decade or so the detail of the model has developed, it has not developed beyond a hierarchical structure of dependent factors. Despite the fact that
this model focuses on an important characteristic of an event - the outcome, it has not been used widely outside of the work of Hay and his collaborators. It is difficult to identify the reasons for this, but certainly one reason may be that the model starts off simply and clearly, but quickly fades into factors which become too general. As a model it is valuable but needs to be focused if it is to be helpful.

One way of achieving this is to repackage the model such that various levels in the hierarchy are identified, and that the final level has a positive function. This is done in the figure below.

OUTCOME MODEL

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. event outcome</td>
<td>primary outcome determinant</td>
</tr>
<tr>
<td></td>
<td>secondary outcome determinant</td>
</tr>
<tr>
<td></td>
<td>tertiary</td>
</tr>
<tr>
<td>2. primary mechanical factors</td>
<td>secondary mechanical factors</td>
</tr>
<tr>
<td></td>
<td>tertiary</td>
</tr>
<tr>
<td>3. primary biomechanical factors</td>
<td>secondary biomechanical factors</td>
</tr>
<tr>
<td></td>
<td>tertiary</td>
</tr>
<tr>
<td>4. mechanisms/rationale</td>
<td></td>
</tr>
</tbody>
</table>

It can be seen that each of the levels in Hay's deterministic model can be identified and if the level identifying the mechanisms is included, there is a clear purpose to the lower hierarchical levels of the model.

The advantages of this model overcome the disadvantages of the technique model. The advantages can be identified as (1) the model focuses on the outcome; (2) it highlights key performance variables; and (3) it can introduce other factors relevant to performance. The disadvantages are (1) the model requires a detailed knowledge of mechanics and biomechanics; (2) it is abstract and therefore difficult to use; (3) it omits details of preparatory movements; and (4) it omits details of technique or 'how to achieve the outcome'.

CAUSAL MODEL

The two previous models are complimentary and can be used to help identify the mechanisms underlying performance. If of cause and effect relationships between the jumped might be expected greater the length of the maximum), the greater they in turn reinforce the prediction of the outcome. are not found then our search for these relationships is governed by the multiple cross correlation is throw up several causal correlations. In one set of measurements it would lead over 77 of the significant correlations with horizontal velocity, vertical velocity, and

Figure 1 Causal Model.
outcome, it has not been difficult to identify the
efforts off simply and clearly, and it is valuable but needs
tious levels in the hierarchy is done in the figure below.

be identified and if the
to the lower hierarchical

be technique model. The
one; (2) it highlights key
want to performance. The
edge of mechanics, and
(3) it omits details of
to achieve the outcome.'

underlying performance. If these mechanisms are influential then there should be evidence of cause and effect relationships. A simple example could be the long jump where relationships between the length of approach, velocity of touchdown and the distance jumped might be expected. These are all linked causally by accepted mechanisms. The greater the length of the approach, the greater the velocity at touchdown (up to a maximum); the greater the velocity at takeoff, the greater the distance jumped as the body is governed by the mechanics of projectiles. These causal relationships would suggest a positive relationship between approach distance and velocity of touchdown, and a positive relationship between takeoff velocity and distance jumped. If these relationships are found they in turn reinforce our understanding of the mechanisms operating, and allow a prediction of the outcome of further modification in these variables. If such relationships are not found then our understanding of the underlying mechanisms needs to be thought through again. The search for causal links between performance variables is often by a multiple cross correlation between measured variables. This 'shotgun' approach is likely to throw up several causal relationships, but do not in themselves lead to an understanding of causal relationships. In our own work (Lees et al., 1992a) up to 56 performance variables are measured and potentially 1540 correlation coefficients could be generated. Chance would lead over 77 of these to be significant at the 5% level, and so an inspection of significant correlations without the help of a model would not be profitable.

There has been one useful example in the literature which has attempted to draw links between performance variables which would be expected to be linked following a consideration of the mechanisms underlying performance of the event. This is by Hay and Nohara (1990) and relates again to long jumping. In their summary of significant correlations they are able to link together variables such as touchdown distance, touchdown horizontal velocity, vertical velocity at takeoff, height of takeoff and distance jumped. This

event sequence

causal

detail

observational
characteristics

Figure 1 Causal Model.
approach is much more useful in establishing an understanding of the critical performance variable than any other systematic approach used in the literature. The approach of Hay and Nohara, as it might be, stems from the insight gained from a decade of concentratei work in the event rather than by following systematic procedures. Their result is not a model as such, but a model can be proposed which allows these links to be made. A causal model can be proposed which is diagrammatically represented in Figure 1.

The essential features of this model are that two or more observational characteristics (for example velocity of touchdown, velocity of takeoff, distance jumped) are linked causally in time as they appear as a part of the event sequence (i.e., velocity of touchdown, velocity of takeoff, and distance jumped would be linked in that order due to their temporal sequence). The third dimension describes the greater levels of detail between observational characteristics. For example at a simple level in the long jump there has always been a concern for the relationship between approach velocity and distance jumped. Generally there is a significant positive relationship reported (e.g. Hay, 1986), as would be expected on the basis of the underlying mechanical factors. However, in attempts to explain the influence of other observational characteristics, a more detailed level can be chosen. Such an example would be the relationship already described by Hay and Nohara, (1990). Yet further causal detail can be proposed to help explain further more complex mechanisms thought to be operating, and these are discussed in Lees et al., (1992b).

As with the previous models there are advantages and disadvantages. The advantages are (1) the model is based on a theoretical underpinning of an event; (2) it attempts to draw links between critical variables and not just any variable; (3) provides a genuine basis for enhanced performance and training regimens; (5) can lead to improvements in technique; (6) can exist at a simple level but is capable of further refinement in detail; and (7) incorporates the best elements of the Technique model and the Outcome model. The disadvantage is that a detailed knowledge of biomechanics is required for satisfactory use.

CONCLUSIONS

The three models identified above are reflections of approaches that are used by sports biomechanists but they have been identified and formalised. In each case the models have been given some extra features which helps to focus their application. Without these extra additions the models lack the sense of purpose which is required to make them useful. It is not suggested that these models are definitive either in their number or scope, but are likely to cover many requirements in biomechanics.

The fact that systematic approaches to the understanding of events has not been a routine feature of the research is quite surprising. It failure to appear at research level has also meant that it not an accepted approach in the teaching of students or the collaboration with coaches. It is the contention of this paper that the use of systematic approaches to the would help all concerned to reach their goals sooner, and in so doing enhance the quality of our work and the value of sports biomechanics to others.
of the critical performance. The approach of Hay and gained from a decade of tic procedures. Their result these links to be made. A in Figure I.

The observational characteristics (for are linked causally in of touchdown, velocity of their temporal sequence). observational characteristic been a concern for the rally there is a significant speeded on the basis of a attempts to explain the be chosen. Such an

