GATHERING OF KINEMATIC DATA OF SPORT EVENT BY TELEVISING THE WHOLE PITCH AND TRACK

Wlodzimier S. Erdmann

Department of Biomechanics, Academy of Physical Education, Gdansk, Poland

INTRODUCTION

Analysis of a sport event for many years has been based on "observation sheets" filled in during the match. Film was used only for analyses of short events. In the 1980's modern ways of movement's analysis were developed. They were performed with the help of video recordings.

For soccer match analysis Defour (1991) and Hughes (1991) used special tablets with drawn in pitch and with drawn in keys labeled with players' numbers and technical actions. By monitoring video picture every situation joined with the ball's movement and players engaged were placed in the tablet with the help of pen-like rod. The tablet was connected to the computer so the kind and the number of actions and spots where they were performed were stored in the computer's memory.

Ohashi (1991) applied for observation of one player two tv cameras placed on potentiometers which measured angles of their rotation. During the whole match cameras were pointed at one player. Computer analysed position of the player from angle data and then calculated his displacement and velocity.

TELEVISING OF THE WHOLE STADIUM'S FIELD

The aim of the registration of the whole stadium's field was receiving an information on: a) every object moving in the pitch (players, ball, referee) or track (runners), b) during every instance of time, c) in every place of the pitch or track.

In order to meet the demands of such registration, it was necessary to place the tv camera high above the stadium's field and in some distance of it. Camera was equipped with a wide-angle (130°) lens (half-fish-eye) and was not allowed to move during the whole televising process - Fig. 1.

For competitor's displacement during a game side lines of the pitch played a role of a reference system - Fig. 2. Half-fish-eye lens gave irregular shape of the pitch on the monitor's screen, so the white tape was put before the event in a position of every 1 m as transversal to the pitch. Every position of the tape was then transferred from tv monitor on to the transparent foil so the reference grid was obtained. On other foil the position of the competitor's were marked. By matching two foils their displacement (Fig. 3) was calculated and then their velocity and acceleration.

APPLICATION IN SPORT GAMES

Erdmann and Czerwinski (1989) presented application of the described method in the team hand ball. During the whole match (2x30 min) a wing player covered the distance of about
Figure 1 - Placing of the camera with wide-angle lens.

Figure 2 - Side lines as a reference system.

Figure 3 - A grid of lines matched with a displacement of a player.

Figure 4 - Team point of position.
Figure 5 - Displacement of the team point of position of the team A and B in 5 minutes.

Figure 6 - Mean positions for every minute and for five minutes for the teams A and B.

Figure 7 - Computerised desk top notational analysis.
4.5 km using walking, jogging, medium and fast running. Because during a game many stand-
ings existed, though mean velocity equaled about 1.5 m/s for longer periods of the match.

Erdmann (1991) introduced the method to the soccer match analysis. During the first 5
min. of the match a striking (left wing) player ran 741 m with a mean velocity of 2.5 m/s
and maximal velocity of 7.8 m/s. For the analysis of kinematic quantities for the group of players
(more than one) at the same time were used. For describing a position of the whole team on the pitch, a mean value and its standard deviation of every (member's) position (point of position) were used - Fig. 4. The mean point of position of the
whole team A moved 404 m, while the whole team B moved 426 m. Team A attacked twice
on the wings (Fig. 5A), while team B attacked twice through the center of the pitch (Fig. 5B).
During the first 5 min. of the match team A was 38 m from its own goal (mean value), and team
B was 51 m from its own goal (Fig. 6). There were also similar mean velocities, i.e. 1.3 m/s
for team A and 1.4 m/s for team B. The maximal velocities were 3.5 and 4.2 m/s respectively. The
score for the first 5 min. of the match was 1:0 for team

APPLICATION IN TRACK AND FIELD

The method described here can also be used for the track and field competitions. For
example, for running events positions of hurdles for 400 m distance can serve as a reference
system. In this way tactics of running of mid and long-distance races can be described.

COMPUTERIZED DATA PROCESSING

In order to speed-up the analysis the computerized data processing was developed (Darg-
lewitz 1992). Special set of sliders was put over the video monitor - Fig. 7. The set was equipped
with a cursor. With the help of the cursor one could follow a change of position of a com-
petitor. Cursor was connected to the rotating mechanism of computer's pointing device - mouse.
Every shifting of an arm along X and Y axis caused proper number of impulses to the pc-
class computer. Special software developed enabled obtaining of all kinematic data.

REFERENCES

- Darglewitz R (1992) Computerized Analysis of Competitor's Movement by Televising the
 Whole Pitch and Track
 stracts, Second World Congress on Science and Football, Eindhoven-Veldhoven.
- Erdmann WS, Czerwinski T (1989) A Method of Investigation a Movement of the Head-
 ball Players in the Whole Field. In: Morrison W. ed Abstract Book. VII International Sym-
 posium of Biomechanics in Sport, Melbourne-Footscray, Vic.
- Erdmann WS (1991). Qualification of Games - Preliminary Kinematic Investigations in Soc-
 Eindhoven-Veldhoven
 World Congress on Science and Football, Eindhoven-Veldhoven.
- Ohashi J (1991) The Ratio of Physiological Intensity of Movements during a Soccer Match-
 Eindhoven-Veldhoven

INTRODUCTION

The growing development of digitized information gives rise to the need of building a new
system.

To validate the system, two video-cameras, from view of the test, were taken into account a whole

METHOD

The equipment used was: camera, control equipment and a video-recorder. The video-recorder
is a NUMONIC PC-2000. The study was carried out in two steps. First, the readings were made on
the field about 4x6 m. To calibrate the system, the players were fixed during filming.

During filming we decided to use a digital filtering in order to compensate for the
noise of the camera and in closing up.

To validate the video-camera, a system was set up with the same system of different
operators.

The comparison was made using a wide motion. The average calculated for the above
range was 162