TRAINING OF THE SKELETAL-MUSCLE APPARATUS OF SPORTSMEN THROUGH ELECTROVIBROSTIMULATION

A.V. Zinkovsky¹, S.V. Eliseev¹, V.V. Kuznetsov¹, I.A. Zoubova¹, K.P. Schmidt²

¹St. Petersburg State Technical University, Russia,
²Limburgs Universiteit Centrum, Belgium

INTRODUCTION

It is often necessary to correct the functional state of the human skeletal-muscular apparatus (SMA) in order to increase the muscle contraction force and the joint mobility as in sports and ballet, for the rehabilitation of invalids and in prolonged space flight to compensate for hypokinesy and -dynamy. For sportsmen it is important to restore their condition after injuries in the shortest possible time. However, traditional methods require a long time to achieve a high functional condition of the SMA. Investigations of the last years showed that electrostimulation is an effective method for the increase of the muscle force and that through vibrostimulation a better joint mobility is achieved.

METHOD

Systematically repeated muscle contractions caused by electrical pulses increase the physiological muscle diameter which results in an increased muscle force. After 20 electrostimulation sessions the maximum of the isometrical tension can increase with 40% - 50%. The electrostimulation induces the addressed muscles to deliver work, which results in an hypertrophy of the myofibrils together with a relative decrease of the sarcoplasmic spaces. As the muscle fibres of the gross motor units are located more superficially than the deeper lying fibres of the fine motor units, at the onset of the electrostimulation treatment the gross motor units of the large movements are recruited first, even with a weak electrical stimulation. So those motor units, which are hard to train at will, but which are very important for the development of the muscle force, can be trained easily by the electrical training. The vibrational forces belong to the rhythmical mechanical stimulations, which summon a specific reaction of the neuromuscular apparatus and other body systems. These mechanical impulses and oscillations can play as vibrostimulation the role of the physiological stimuli. The vibrostimulation has a lasting effect on the nervous system, which can stay even during several days after the treatment. Already a short vibro-massage shortens the rehabilitation period of the muscular system of sportsmen. The efficiency to develop the muscle forces of the joint movements or to revalidate the motional functions after trauma and illness is ten and more times higher than in the traditional methods of sports and sportmedicine. The working hypothesis was applied as follows: during the exercises electro- and vibrostimulation were used simultaneously in order to perfect the active movement in the different joints. During a programmed sequence of motions by synergists and antagonists, the vibrostimulation was applied to the antagonists while the electrostimulation was applied to the agonists and synergists. The vibrostimulation elongates the antagonistic muscles, i.e. the zone of the passive insufficiency decreases, whereas the electrostimulation causes the force of the synergistic contraction to increases in the zone of the active insufficiency. A whole pattern of the human skeletal-muscular apparatus of both the joint is stimulated. We therefore developed a combined electrovibrostimulation of the human skeleton of ballet and sport. Separately for the combined electrical and mechanical stimulation existing devices are not applicable, because they are not tuned in a very limited frequency range is to treat charges, and not rest charges, and not rest charges. Likewise are the existing devices for the combined electrovibrostimulation for the rehabilitation of invalids and in prolonged space flight because they are not tuned in a very limited frequency range.

The Laboratory of Biomechanics has invested considerable efforts in the development of new devices and has been offered by the Institute of Biomechanics of Moscow.

The apparatus consists of an electrovibrostimulator and an electromotor. The electrovibrostimulator contains an electronic circuit for electrical stimulation of both the muscle and the skin-muscle load. The electronic circuits of the electromotor and the electrovibrostimulator allow the adjustment of the frequency, duration, and the repetition frequency of the electrical stimulating impulses in a frequency range from 1 to 100 Hz. The electromotor works as a stage amplifier of the electronic circuit of the electrovibrostimulator and its modulation frequency makes the electrovibrostimulator an effective tool for the stimulation of the nervous system. The vibrostimulator is based on the transformer mechanism and supplies the electromagnetic frequency of the vibrator frequency of the electromotor. Both parameters for electric and mechanical frequency can be varied during the exercises electro- and vibrostimulation. The vibrostimulator allows the exchangeable massages and the vibration amplitude to be applied to the patient's body with high efficiency. The modems of the patient's body with high efficiency. The modems of the patient's body with high efficiency.

The module of the parameters for electrical voltage, frequency, and mechanical frequency can be varied during the exercises electro- and vibrostimulation.
human skeletal-muscular force and the joint ligaments and in prolonged postures. For sportsmen it is the most possible time. We observed a high functional role of muscle force and joint strength.

Electrical pulses increase muscle force. Isometric tension can be addressed to individual fibres of the fine motor units or to the gross motor units, which are trained easily by rhythmic mechanical muscle contractions. The fibrosarcoma apparatus can play as an "electrical" stimulator. During several days the rehabilitation of a patient's body is developed. The selection of synergists and antagonists helps to achieve an optimum pattern of the joint movement.

We therefore developed a program-controlled device for the electrovibrostimulation of the human skeletal-muscular apparatus for applications in medicine, ballet and sport. Separate electro- or vibrostimulators are available but devices for the combined electrovibrostimulation do not exist. The characteristics of the existing devices are not fit for professional use, as a.o. the existing electrostimulators lack a stabilization of the injected muscle current, the pulse frequency range is too limited, the only unipolar pulses cannot remove electric rest charges, and none can give pulse bursts or a modulated pulse sequence. Likewise are the existing vibromassage units not suited for medical purposes, because they are not versatile in their use and the vibro characteristics can only be tuned in a very limited frequency range.

The Laboratory of Biocybernetics of the St.Petersburg State Technical University has invested considerable work into the development of a prototype of a muscle electrovibrostimulator and its experimental testing, the laboratory model having been offered by the Central Scientific Research Institute of Prosthetics in Moscow.

The apparatus consists of three main parts: the electrostimulator, the vibrostimulator and the programmable control and driver unit. The electrostimulator consists of a generator for pulses or pulse trains of selectable frequency, duration, amplitude and shape adapted to the patient's body. The pulse repetition frequency can vary from 1 to 20 kHz. The pulse width can be changed from 1 to 100 μs. The pulse mode can be continuous or amplitude modulated with a modulation by square or sinusoidal voltage pulses from a separate generator. The modulation frequency can be chosen between 10 and 100 Hz. In the sinusoidal modulation mode each pulse train starts from zero amplitude, which makes the electrostimulation softer even for rather large currents. The output stage amplifier of the electrostimulation channel has a strong negative feedback which stabilizes the current to better than +/-1% even under extreme values of the skin-muscle load resistance between the electrodes.

The vibrostimulator is based on an electromotor, whose rotor revolutions are transformed into the linear oscillations of the vibrator. The design of the vibrotransformation mechanism allows a continuous variable vibrational amplitude. The vibro frequency is controlled by selecting the angular speed of the electromotor. Both parameters are electrically controlled so that they can be varied during the electrostimulation following a preset program. Our vibrostimulator allows to regulate the vibrofrequency in the range from 5 to 50 Hz and the vibration amplitude between 0,1 and 10 mm. The device has different exchangeable massage probes which permit the massage of different parts of the patient's body with maximum effect.

The module of the programmable driver unit allows manual selection of the parameters for electro- and vibrostimulation, and automatic control of the action of the electrovibrostimulator with given amplitude, frequency and duration. The electronic circuits of the electrovibrostimulator and the control unit use the IC 521...
technology in MSI, which is a fair compromise between a good reliability of the apparatus under field conditions and a reasonable price of the unit. The broad adaptation range of the pulse parameters of the combined apparatus allows an optimum application in order to ensure for every patient the maximum efficiency of the medical and medico-prophylactic measures.

RESULTS
For the test of the developed electrovibrostimulator two series of experiments were set up. In the first series the separate influence of vibrostimulation and electrostimulation on the improvement of the joint movement under different exercises was measured. By the second series the effect of the combined method of the muscular electrovibrostimulation in the physical training of athletes was experimentally determined. Therefore three experimental and three control groups were organized. In each experimental group one of the stimulation methods for the perfection of the joint movement was tested: in the first group the electrostimulation, in the second the vibrostimulation, in the third the combined electrovibrostimulation. In total more than 100 top athletes took part in the experiments, among them 10 world qualification masters of sport and 20 masters of sport. The other athletes were candidates of master of sport and sportmen of the 1st class. Also took part in our experiments the Honoured Masters of Sport A. Ditjatin and E. Davidova, two winners of gold at the XXII Olympic Games in Moscow.

Every group had 25 training sessions. During these trainings the athletes did special exercises with electrostimulation, vibrostimulation or with combined electrovibrostimulation. During each training session we defined and registered the level of development of the movements of the trained joints. The stimulation treatment was applied once a day every second day, always in combination with the ordinary training. The whole experiment lasted for 6 weeks.

A necessary condition of the experiment was the active participation of the sportsman. During an exercise the athlete should perform rhythmic movements together with vibrostimulation, at the same time trying e.g. to lift his leg as high as possible. With the vibrostimulation switched on, the leg involuntarily moved higher. The athlete then should keep his leg in the up position as long as possible. The electrovibrostimulation helped him to lift the leg 6-10 cm higher than his normal height limit.

During all the time of the electrovibrostimulation we perceived a tendency to increase the amplitude of the movement. With clear statistical significance this increase of the active mobility at lifting the leg was observed for all sportmen. Most important is the fact, that the electrovibrostimulation effect stayed for a long time: from 1 month till 1,5 months. During this time the repetition of that specific exercise without the electrovibrostimulation proved the effectiveness of our method.

At the same time the passive mobility in the hip-joint improved. Gymnasts who could do the splits before, told that it was very easy for them to do the splits under electrovibrostimulation. Sportmen who did not do the splits before, came already after a first electrovibrostimulation session nearer to the aim of this exercise (3-5 degrees better). Sportmen who had never done the splits before started to do it completely after 5-7 electrovibrostimulation trainings. Only three sportmen from

the experimental group amplitude of the hip-joint 8-10 degrees. The electrovibrostimulation active and the passive electrovibrostimulation vibrostimulation performs insufficiency, whereas passive, but also the antagonistic muscular Electrostimulation increased muscles in the zone of active mobility of the joint.

CONCLUSIONS
Research in our laboratory University showed that are better than those programmable device an increase of the condition substantial decrease of an increase of the joint electrovibrostimulation goes practically increase of the mobility joint keeps its durability. The electrovibrostimulation joint mobility after a training electrovibrostimulation joint mobility. The results which allows to improve of the active and passive

REFERENCES
A. V. Zinkovsky, V. V. K.
good reliability of the 
combined apparatus 
patient the maximum 
temperature of the 
electric unit.

A series of experiments 
under different 
methods of athletes was 
and control groups 
with the combined 
movement of athletes 
and the third the combined 
took part in the 
sport and 20 masters 
and sportmen of 
Masters of Sport A. 

In the experiments the athletes did 
with combined 
and registered 
joints. The stimulation 
ys in combination with 

were participation of the 
yrthmical movements 
voluntarily moved as 
possible. 0 cm higher than his 
received a tendency to 
ical significance this 
for all sportmen. 
effect stayed for a long 
petition of that specific 
effectiveness of our 

proved. Gymnasts who 
do the splits under 
before, came already 
from this exercise (3-5 
before started to do it 
three sportmen from 

the experimental group could not perform the splits completely. However, the 
amplitude of the hip-joint motion in the frontal plane increased with not less than 
8-10 degrees. The results of these experiments show that the combined 
electrovibrostimulation gives in a shorter time a better effect for the training of the 
active and the passive mobilities in the hip-joint and confirm the superiority of the 
electrovibrostimulation training in attaining the optimum joint mobility. The 
vibrostimulation perfects the mobility by reducing the zone of the passsive muscle 
insufficiency, whereas the electrovibrostimulation not only reduces the zone of the 
passive, but also the zone of the active insufficiency. Vibrostimulation elongates 
the antagonistic muscles, so that the range of the passive insufficiency decreases. 
Electrostimulation increases the contraction force of the agonistic-synergistic 
muscles in the zone of the active insufficiency resulting in the perfection of the 
active mobility of the sportsman's locomotor system. The simultaneous 
stimulation of synergists and antagonists creates the optimum mobility structure in 
the joint.

CONCLUSIONS
Research in our laboratory of Biocybernetics of the St.-Petersburg State Technical 
University showed that the results of the combined electro- and vibrostimulation 
are better than those obtained after a separate application of both. With a 
programmable device for the combined electrovibrostimulation we achieved an 
increase of the concentrical and eccentric muscle contraction force, a 
substantial decrease of the zones of active and passive muscle insufficiency and 
an increase of the joint mobility. The experimental data show that after the 
electrovibrostimulation the increase of the active and the passive mobility in the 
joints goes practically parallel. This means that notwithstanding a considerable 
increase of the mobility because of the stretching of the antagonistic muscles, the 
joint keeps its durability because of the increase of the synergistic muscle force. 
The electrovibrostimulation training had a big effect on the rehabilitation of the 
joint mobility after a trauma. The experiments confirmed the effectiveness of the 
electrovibrostimulation training for the redevelopment of the muscle force and 
joint mobility. The result of the research consists in the creation of a method 
which allows to improve the functional condition of the human SMA in the zones 
of the active and passive insufficiencies, especially under extreme loads.

REFERENCES