THE STABILITY OF THE UPPER LIMB IN DIFFERENT SPORT EVENTS

E.T. Rinderu, G.S. Dragoi, P.L. Rinderu

University of Craiova, Romania

INTRODUCTION
The study of a biomechanical system will imply the use of many simplification hypothesis, approximation methods and optimisation techniques. The study of such a system is extremely important due to the fact that many times our body is confronted with abnormal solicitations. The stability of the shoulder girdle represents a wide direction for researchers, both from medical or (bio)mechanical point of view. In some sports events (gymnastics, javelin throwing etc.) knowing the behaviour of the shoulder system is a very useful tool for sportive, trainer and the sportive medical doctor. The analysis of the shoulder girdle system is a difficult task, both from experimental or theoretical perspective. The main advantage of using experimental techniques reside, in principal, in obtaining high degree of confidence results. But, in the same time, the difficulties of such experimental studies are high enough. On one hand, the experimental procedures imply the use of high costs apparatus and on the other the subject can not always perform at his maximum capabilities due to the presence of markers, wires etc. The use of theoretical models has to prove their validity reducing the costs of the research. In this paper we will try to develop an improved analytic model that could be used for analysing the behaviour of the shoulder girdle mechanism.

METHODS
The shoulder girdle, according to anatomic description, presents four elements: thorax, clavicle, scapula and humerus and next joints: sternoclavicular (A), acromioclavicular (B), glenohumeral (D) and the scapulothoracic gliding plane (E), as shown in fig. 1. The dimensions of these were taken from classic antropometric studies (Bart, 1957). To model the kinematic chain the specified joints were modelled as follows: the A, B and D joints as spherical joints (each of these possessing three degrees of freedom- dofs) and the E joint as presenting 4 dofs. We would like to underline the fact that the definition for the number of dofs that characterise A and B joints reflects last hours experiments (Pronk, 1991; van der Helm, 1992, 1994; Veeger, 1992) and contradicts previous limited definitions for these joints mobilities. The above mentioned mobilities characterise a general movement of the upper limb. The Denavit-Hartenberg matrix formalism allows to obtain the kinematic model.
of many simplification
ues. The study of such
times our body is con-

'OSsa Carpi
Ossu Metacarpali
Ossa digitum manus

presents four elements:
clavicular (A), acromio-
plane (E), as shown
antropometric studies
joints were modelled as
these possessing three
dofs. We would like to
characterise A and B
m, 1992, 1994; Weeger,
its mobilities. The above
upper limb. The Denavit-

RESULTS
The obtained results are touching kinematic and dynamic aspects. From kine-
monic point of view these results respect the natural behaviour of the shoulder girdle.
From dynamic point of view the results are more interpretable and are pointing out-
side the frame of the present paper. For peculiar movements (flexion-extension or
abduction-adduction) these mobilities are reduced (Pronk, 1991; Rinderu, 1995). In
fig. 2 is presented the considered model for applying characteristic analysing techni-
escues of the theory of mechanisms. In this way was possible to derive the kinematic
behaviour of the considered kinematic chain. Knowing the kinematics of the mecha-
nism, the evolution in phases plane (that permits to find information about the stability
of the system) is easily obtained. Interesting conclusions were found, identifying (for
different movement cycles) the points were the systems is stable, at limit stable or
unstable. Fig. 3-6 present some of the kinematic results concerning one of the most
sensitive and solicited joints of the shoulder system, the glenohumeral joint. Fig. 7-10
show the evolution of the system in the phases plane for some points of the kinematic
chain.

---

Fig. 2 The shoulder girdle mechanical model

---

Fig. 3 x(t) plot for the centre of B joint
CONCLUSION

Analysing figs. 7-10 is important. The throwing event (approximately 80°-100°) is within the range of values considered in this study. The result, as presented in the figures, shows that the presented model can be used to predict the throwing egg's stability from a stability point of view.

REFERENCES


CONCLUSION

Analysing fig. 7-10 is possible to identify the fact that, for example, in the javelin throwing event (approximately a flexion-extension movement of the upper limb), in the range of 80°-100° the system presents changes in the stability definition. Taking into consideration discussions with sportives, trainers and sportive medical doctors, this range of values coincides with the most soliciting situation during this event. The result, as presented in high confidence studies (van der Helm, 1991, 1994), coincides also with the situation of maximum force in the glenohumeral joint. The presented model can be used for analysing the behaviour of this biomechanism and for predicting its comportment in the case of different sports events, especially from stability point of view.

REFERENCES


