EFFECTS OF PROLONGED BENCH STEPPING ON IMPACT FORCES
Kerry W. Hecko and Alfred E. Finch
Indiana State University, Terre Haute, Indiana, USA

INTRODUCTION
This study examined the effects of bench stepping at an 100 bpm cadence on an 20.3 cm bench over a 40 min workout on the vertical ground reaction forces (GRF).

METHODOLOGY
Ten college-aged females experienced in bench step aerobics wearing new aerobics shoes performed a 40 min bench step aerobic routine on a 20.3 cm bench using an arm and leg crossover, alternate lead leg routine at a 200 bpm cadence. Twenty seconds of force platform data was collected at 0 min, 10 min, 20 min, 30 min, and 40 min of the aerobics activity. The vertical GRFs were collected by an Ariel APAS system using a Kistler force plate at an 1000 Hz sampling rate. Three right and 3 left stride impacts were selected from the middle of the 20 second interval for analysis. Each stride was delineated in 3 phases: 1) landing contact (LAND) 2) full weight-double support, (DS) and 3) toe pushoff (TO). The vertical GRFs (Fz) at the 3 phases for the 3 right and left strides, and the stride time durations were calculated. An 2x5x3x3 ANOVA (FT x TIME x STEPS x PHASE) with repeated measures on all factors was used to analyze the vertical forces and an 2x5x3ANOVA (FT x TIME x STEPS) was used to analyze the stride contact time.

RESULTS
The subjects’ mean height was 165.3 ± 5.0 cm, the mean body weight as 526.9 ±39.5 N, and the mean age was 22.7 ± 3.4 years. Table 1 provides a summary of the vertical GRF (Fz) at LAND, DS, and TO. No significant differences in the GRFs were found to exist for the stride factor (right-left) and for the step trial factor. A significant phase factor was found to exist (p=.000) when examining the vertical GRFs. The average left stride contact forces were 978.2N (186% BWT), the average left stride GRF during double support was 1093.7N (208% BWT) and the left foot during the toe-off phase exerted a 795.1N (151% BWT) GRF. The average right stride contact forces were 1097.6N (BWT).

TABLE 1 GROUND DURATION

<table>
<thead>
<tr>
<th>Exercise Time</th>
<th>Phase 1 Land</th>
<th>Mean ± SD</th>
<th>% Body Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Min % Body Wt</td>
<td>946.7 ±164.0</td>
<td>185%</td>
<td></td>
</tr>
<tr>
<td>10 Min</td>
<td>994.3 ±245.6</td>
<td>189%</td>
<td></td>
</tr>
<tr>
<td>20 Min</td>
<td>983.1 ±194.8</td>
<td>187%</td>
<td></td>
</tr>
<tr>
<td>30 Min</td>
<td>983.6 ±212.0</td>
<td>187%</td>
<td></td>
</tr>
<tr>
<td>40 Min</td>
<td>983.1 ±222.8</td>
<td>187%</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Each measurement was an average of three strides.

Differences in the vertical GRFs over the 40 min workout were marginally significant. The subjects’ GRFs during double support phase tended to increase after the initial 10 minutes of stepping and decreased after 30 minutes of stepping. An 8% increase in the double support phase GRFs after 10 minutes of step aerobics was the result of greater loading during fatigue as shown in Figure 1. The combination of these increased GRFs during fatigue and thousands of foot impacts had potential for the development of musculoskeletal injuries if frequent recovery time is not provided between workouts.

These vertical GRFs (1992), Humphries & Newell, Rodriguez-Zayas, Armstrong, The analysis found...
The mean body weight as
table 1 provides a summary
differences in the and for the step trial factor. hen examining the vertical t (186% BWT), the average 8% BWT and the left foot) GRF. The average right

Differences in the GRFs over the 40 min workout were marginally significant (p=.10). The subjects' GRFs during the double support phase tended to increase after the initial 10 minutes of stepping and decrease after 30 minutes of stepping. An 8% increase in the double support phase GRFs after 10 to 30 min of step aerobics was the result of greater loading due to fatigue as shown in Figure 2. The combination of these increased GRFs during fatigue and thousands of foot impacts have the potential for the development of musculoskeletal injuries if sufficient recovery time is not provided between workouts.

The analysis found significant differences in the time of contact over the exer-
No differences in the contact times were found between the right and left strides or over the 3 trials. The mean contact time was 1.262 sec at the beginning of the workout and decreased to 1.19 sec over 30 minutes of step bench aerobics as shown in Figure 3. The reduction in contact time with the platform was the result of the subjects standing on the bench longer and using a more ballistic stepping technique on the platform as the exercise prolonged. Also, this change of technique was reflected in increases in the double support GRFs during the same time durations.

CONCLUSIONS

Prolonged step aerobics on a 20.3 cm bench resulted in marginally significant increases in the vertical GRFs during the double support phase after 10 to 30 min of exercise. The vertical GRFs exhibited after 40 min of bench step aerobics were 188% BWT at landing, 208% BWT at double support and 153% BWT at toe-off and these forces would be indicative of a mild impact activity. Also, the timing of the step bench technique was altered as the exercise was prolonged. The subjects used a more ballistic technique during the 10 to 30 min of exercise which was indicated by less time on the platform and more time on the bench.

REFERENCES

DETERMINANTS OF THE THROWING VELOCITY IN HANDBALL - A STATISTICAL MODEL

Jerzy Eliasz, Andrzej Witt

Dept. of Biomechanics, Institute of Sport, Warsaw, Poland

INTRODUCTION

Ball velocity is one of the most important factors which has a decisive effect on scoring in team games, like handball, baseball, cricket, water polo, volleyball, soccer etc. (Atwater 1980, Jorís et al. 1986, Eliasz et al. 1990, Marczinka 1993). Basically scientists are in agreement that the main determinants of the ball's velocity can be divided into three groups: technique of motion, somatic features and motor ability (Pauwels 1978, Muijen et al. 1991). However, the technique of motion and the fitness level can be improved by the training process, morphological factors are, in the main part, genetically determined. Thus, the information about the degree of influence of each factor on the ball velocity appears substantial, in order to answer the question: proper selection or proper training has a better effect on ball velocity measured during throwing. Among experienced players it is particularly difficult to make progress in this area without special approach to exercises and training methods. The first step leading to this task is to specify the most important characteristics which effect ball velocity and develop them during training.

The aim of the research was to find the influence of the basic anthropometrical and motor ability parameters on ball velocity during throws in handball where the throwing technique remains consistent. These relationships seem to be very important for coaches, in order to improve the selection quality and the efficiency of training methods.

METHODS

Twelve high-performance handball field players took part in the experiment. The average values of basic parameters of physical characteristics of the subjects were: 89.0±7.8 kg body mass, 1.88±0.05 m body height and 23.3±2.5 years of age.

Anthropometric measurements were carried out according to Martin's method. The following somatic indices were used: length (body height, upper and lower extremity, arm, forearm, palm and fingers of the predominant hand), skeleton width (shoulder, pelvis, palm), musculature (arm and forearm circumference) and adiposity (three skin folds). For each player we used 26 somatic characteristics. In order to assess the overarm throwing performance, a standard handball was used (mass 480 g, circumference 58 cm). The subjects were instructed to throw the ball as fast as possible at a target (50 x 50 cm) placed at a distance of about 6 meters. The average linear ball velocity was measured over a 2 meter distance using a special photocells system (Eliasz et al. 1990). The muscle strength was evaluated on the basis of torques developed by main muscle groups under static conditions. The isometric muscle torque stand (locally made) was used to make the measurements, which enabled the direct measuring of torques for flexors and extensors of elbow, shoulder, knee and hip joints and flexors and extensors of trunk (Jaszczuk et al. 1987).
The measurement of the muscle torque under dynamic conditions were carried out on the CES ARIEL modified in its mechanical part. Subjects performed simulated throws in the sitting position, propelling the bar of the Arm-Leg Station. Each subject executed 3 kinds of tests: maximal speed diagnostic (MSD), isokinetic exercises (IKE) at angular velocities 100, 300 and 500 deg/s, isotonic exercises (ITE) at external torques 10, 30 and 50 N·m. During the vertical counter-movement jump performed on a force platform maximal height of the jump and maximal mechanical power of the lower extremity and trunk were measured. The signal (force) was processed on-line using IBM PC.

Statistical methods

The mean value, standard deviation and coefficient of variance were calculated for each parameter. A normality of distributions were examined using the Shapiro-Wilk test. At the next stage the Pearson's correlation matrix and multiple regression analysis were used (α=0.05). The row data were recalculated to values in T-scale and according to the Doolittle method the contribution to throwing velocity was calculated for each factor: motor (M) and anthropometric (A). The best regression subset was assigned using Fisher's discriminating method. The regression hyperplane parameters were estimated, which divided players according to throwing velocity criterion.

RESULTS

Multiple regression analysis has shown that the most important throwing velocity determinants are: range of fingers, shoulder width and length of hand - among anthropometrical factors and isometric muscle strength of trunk flexors, maximal angular velocity of the bar measured in MSD and average mechanical power developed in CMJ - among motor abilities. Expected value of the ball velocity (Y) is stated the following equation:

\[Y = 0.018 X_1 + 0.733 X_2 + 0.039 X_3 - 0.332 X_4 + 0.006 X_5 - 2.854 \]

where: \(X_1 \) - maximal angular velocity (MSD), \(X_2 \) - range of fingers, \(X_3 \) - average power (CMJ), \(X_4 \) - shoulder width, \(X_5 \) - isometric muscle strength of trunk flexors

For these five parameters the multiple correlation coefficient is: \(R=0.982 \) \((R^2=0.963) \).

The proportional contribution of these factors in expected value of the ball velocity is:

\(X_1 = 36\% \); \(X_2 = 41\% \); \(X_3 = 3\% \); \(X_4 = 6\% \); \(X_5 = 11\% \).

After recalculation to T-values the final equation contains two main factors: anthropometric (A) and motor (M):

\[Y = 0.017 A + 0.072 M \]

\(R=0.857, \ R^2=0.735 \)

The proportional contribution of these factors in expected value of ball velocity is 11.9\% and 61.4\%, respectively.

Using Fisher's discrimination method, according to ball velocity criterion, the subjects were divided into two groups, consisting of nine (mean velocity) and three people (high velocity). It is shown on figure 1. The hyperplane parameters are as follows:

\[0.149 M + 0.051 A - 23.821 = 0 \]
Dynamic conditions were part. Subjects performed 50 trials of the Arm-Leg Station. Speed diagnostic (MSD), and 500 deg/s, isotonic to criterion. During the vertical from maximal height of the extremity and trunk were recorded. The coefficient of variance were examined using a correlation matrix and the contribution to discarding method of the contribution to estimating (A) and anthropometric (A). DISCRIMINANT ANALYSIS

Widely used as a discriminating method, which divided players most important throwing strength of trunk flexors, and average mechanical value of the ball velocity were 0.006 X₅ − 2.854

of fingers, X₃ − average strength of trunk flexors coefficient is: R=0.982

value of the ball velocity

The results suggest that motor abilities (especially muscle strength) have a great influence on throwing velocity in handball. Many researchers who have investigated an overarm throw, have indicated that muscle strength is a very important factor influencing throwing velocity (Pauwels 1978, Bartlett et al.1989, Pawlowski and Perrin 1989, Wooden et al.1992, Eliasz 1993). In this work statistical analysis has shown that the muscle strength of trunk flexors (abdominal muscles: abdominal rectus, external and internal obliques) and the maximal arm speed are the most significant velocity determinants. Abdominal muscles are involved in forward bending and trunk rotation (caused by one-side shortening action of external and internal obliques) - the type of motions observed during throwing before release (Atwater 1980, Joris et al.1985, Eliasz 1993, Marczinka 1993). From a practical point of view there are two main possibilities to improve throwing velocity in handball: (1) development of abdominal muscles strength and (2) by improving the speed of external and internal rotation at the shoulder joint.

Among the anthropometrical features, only the range of fingers and hand length are correlated significantly with the ball velocity in measured throws. All these factors determine the grip quality, which allows the ball to be caught, held and manipulated easily. The influence of these factors on throwing velocity are significantly less than motor abilities. The basic somatic features (body height, body

Fig.1. The hyperplane obtained in discriminant analysis separates handball players into two groups of different throwing velocity. The points placed on the right side of hyperplane represent the results of the subjects who throw the ball with high velocity.
mass) seem to be more important to the selection of players to specific positions in the game than to general selection for the sport, although it statement still needs verification (Maia et al. 1991).

CONCLUSIONS

These results suggest that:
1. The most important throwing velocity determinant is the motor abilities level (if the technique of motion is not taken into the consideration).
2. Among analyzed motor parameters the strength of trunk flexors (abdominal muscles) and maximal arm (shoulder joint) angular velocity have a decisive effect on ball velocity in handball.

REFERENCES

KINEMATIC ANALYSIS

RESULTS

António P. Ferreira 1, O. Maia 2

1 Technical University of Coimbra
2 Mechanical Engineering

INTRODUCTION

The purpose of the present research was to study the mechanical parameters involved in the throwing process. It doesn't deny the importance of anthropometric measurements in predicting the throwing performance, but it only assumes that anthropometric data do not explain the variability in performance (Maia et al. 1991). The throwing performance is a complex process that should be understood by analyzing the relationship between kinematic and kinetic variables (Marczinka 1993). The throwing performance is a complex process that should be understood by analyzing the relationship between kinematic and kinetic variables (Marczinka 1993).

Shooting is the first technical aspect that the youngster's feeliing about himself, and his shooting performance is a complex process that should be understood by analyzing the relationship between kinematic and kinetic variables (Marczinka 1993).

The youngster's feeling about himself, and the youngster's feeling about himself, and his shooting performance is a complex process that should be understood by analyzing the relationship between kinematic and kinetic variables (Marczinka 1993).

Severall studies about the dependency of the kinematic and kinetic parameters of foul shots on the mechanics of the shooting process have been made and Keller-MacNulty (1962) have demonstrated that no correlation was found. No correlation was found by the Keller-MacNulty (1962) and the Keller-MacNulty (1962).

METHODS

Eight fourteen-year-old boys were included in the study. The subjects' mean age was 14.82 years (+/-6.8 years) and mean body mass was 50.82 kg (+/-6.39 kg). Two regular size balls (613 gr weight) and one adapted-size-ball (601 gr weight) were used.