A GENERAL MODEL OF DEVELOPMENT OF A NEW GYMNASTICS ELEMENT

Ivan Čuk, Iztok Colja

University of Ljubljana, Faculty of Sport, Slovenia

With a new gymnastics element a gymnast wants to impress judges and to get an advantage over the other gymnasts, specially if the new element is very difficult and if it is executed with high amplitude and elegance. Slovenian gymnasts were in the last decade very original and they developed some new elements. As the development of a new element is a general problem in gymnastics we tried to define this phenomena theoretically.

Our investigation shows that we can define a general model of how to develop a new gymnastics element. The model consists of seven consecutive phases:

1. idea of a new gymnastics element,
2. definition of the hypothetical biomechanics model of the new element,
3. consistency of the new element with the present Code of points,
4. designing of the methodics,
5. training until successful execution,
6. collecting and analysing the biomechanics data,
7. definition of the optimal biomechanics model of the new element and saving the data into the data base.

The first phase is essential, and is usually of a random nature. In many cases a new element is the product of experience and logical thinking of the gymnast and his trainer. Also often a new element is developed by scientists.

The Code of points includes all elements ever performed by somebody at the competitions and which are ranked at least as an A part (the easiest element) by the FIG technical committees.

An element is always described with four basic data:

- apparatus on which the element is performed,
- position of the gymnast in regard to the apparatus,
- contact of the gymnast with the apparatus,
- description of the movement or position.

If we change any of the mentioned parameters we can get a slight deviation of the known element or a new element. When the changes are very important we consider such an element a new one and often we give a new name to the element.

APPARATUS ON WHICH THE ELEMENT IS PERFORMED

At the first step we can transpose an element from one apparatus to another one. For instance in male gymnastics: giant swings were first performed on the high bar, later on rings and last on parallel bars. Also we can transpose elements from men's apparatus to the women's apparatus and vice versa. The already mentioned giant swings were in late seventies performed on uneven bars.

Not only transfer from apparatus to apparatus but also improvement of the apparatus mechanical characteristics can enable new elements. With the revolutionary new springboard for vault, Tsukahara from Japan (at the World championship in
Ljubljana, Slovenia, 1970) performed a new super vault, which has become after 25 years a basic skill for gymnasts.

FIG which writes Code of points, together with the equipment manufacturers, support development of new elements. Trainers, gymnasts and scientists are active new-elements designers and FIG with equipment manufacturers are passive new-elements designers.

Unfortunately all competitive apparatus has internationally recognised technical norms. This is the reason why we are more directed into changing other parameters.

POSITION OF THE GYMNAST IN REGARD TO THE APPARATUS
This variable determines the gymnast's potential energy and his balance. According to this gymnasts can:
1. stand, sit, kneel or lie:
 - on the apparatus
 - in front of the apparatus
 - behind the apparatus
2. hang
 - frontways
 - rearways
3. support
 - upper arm support
 - support
 - handstand

All the positions can be also in a side or cross position.

CONTACT OF THE GYMNAST WITH THE APPARATUS
If the position of the gymnast is 'hang' or 'support' he can be in different contacts with the apparatus. With the contact we usually change the gymnast's balance position, moment of inertia or the gymnast's arms are in such an anatomical position, where some muscles groups cannot be partly or completely used.

DESCRIPTION OF THE MOVEMENT OR THE POSITION
Movement is described first by its starting position, then action and finally with its ending position. It is much easier to describe a static position as we need less parameters. The starting position of the movement is usually similar to the position of the gymnast in regard to the apparatus. During the movement the gymnast changes his total energy according to the changes of potential energy, translational kinetic energy and rotational kinetic energy. When we are searching for a new element we try to simulate known element with:
- changed direction of the movement (forward, backward, sideward and mixed direction),
- added rotation forward or backward or/and to left or right or/and around the longitudinal, transversal or sagital axis or combined rotation,
- changed body position (tucked, piked, stretched, straddled, with legs together etc),
- added flight phase.

REFERENCES
Gaverdovskij, J. et Moskva, Fiski
which has become after 25
the equipment manufactu-
gymnasts and scientist are
ment manufacturers are passive
nationally recognised technica
changing other parameters.

THE APPARATUS
en energy and his balance. A-

PARATUS
r t can be in different con-
range the gymnast's balance
are in a such an anatomical
vory or completely used.

POSITION
n, then action and finally with
the position is as we need less
ually similar to the position of
ement the gymnast changes
energy, translational kinetic
ch for a new element we

or right or/and around the
lined rotation,
straddled, with legs together

When we add a flight phase and the new element is not dismount we have to
design a new contact with the apparatus which can be similar to the contact before
release.

And last by we have to design the ending position of the element, which can
be similar to that in the starting position.

With the second phase we design a biomechanical model of the new ele-
ment, we have to determine theoretically trajectories, velocities, forces etc. for the
new element.

The third phase gives the answer if the new element is consistent with the
present Code of points and if the benefits of the new element are such that it is worth
to start to learn it.

If the third phase gave us a positive answer we go to the fourth phase where
we have to determine the methodics. Methodics is formed on the theories of motor
learning and on the biomechanical model of the element. In the first step we have to
choose a gymnast who will be able to perform the new element. Criteria for the
gymnast are: previous technical knowledge, adequate level of motoric abilities, ap-
propriate level of morphological characteristics and adequate psychological readiness.
At the next stage we have to describe the new element to the gymnast. The next step
is defining a learning method (e.g. syntetic, analytic) and defining a complex of exer-
cises the gymnast will have to do. At the next step we have to determine a way of
correcting mistakes and the modes of assistance during the execution of the ele-
ment.

The fifth phase is training the new element up to the minimal criterium of a
good technical execution of the element. Minimum technical criterium means execu-
tion of the element without a major mistake (from the Code of points - penalisation for
the error is less than 0.4 points).

The sixth phase means collection and analysis of the data related to the exe-
cution of the element.

The seventh phase is definition of the optimal biomechanical model of the
element and saving all the data into the data base.

The general model can be applied in men's and women's artistic gymnastics
and can be also used in some other polystructural conventional sports.

REFERENCES
Čuk, I. (1996). Development and analysis of the new gymnastics element (cast
to salto forward as dismount from the parallel bars). Faculty of sport,
Ljubljana.

Moskva, Fiskultura I sport.