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In this study, a modeling method based on Multi-Layer-Perceptron neural networks (MLP) 
is presented, using the example of shot-put flight. This method can be used for rapid con-
struction of models. For performance of shot-put, a physical model based on the shots’ 
equations of motion is easily designed. In this way, an analysis of the shot-put projectory 
can be used to illustrate the effectiveness of the neural network modeling method. Using 
the physical model, release data has been determined and altered with random errors 
such as those introduced by video analysis.  A technique for optimal learning with the 
neural networks has been developed. The resulting MLP models the shot-put flight suc-
cessfully.  The  difference  between  the  model’s  predicted  distance  and  the  distance 
reached by the physical model are within 2.5%. In conclusion, this method allows rapid 
creation of models to solve biomechanical problems and can serve as a useful tool for 
coaches and athletes. 
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INTRODUCTION: The design of models for biomechanical problems can be an extremely la-
borious and sometimes daunting task. This can be due to imprecise data acquisition for the 
model, inherent non-linearities and the overall complexity of the task. It can also be caused 
by influences from the environment that can not be determined at all, or only measured with 
extreme difficulty. However, in sports biomechanics there is a need for models to support 
coaches and athletes with the aim to improve performance. This paper presents a modeling 
method that can be used to construct rapidly, an input-output model of a problem by utilizing 
the example provided by input-output data. This method is based on the powerful information 
processing technology subsumed under  the term artificial  neural  networks  (NNs;  Haykin, 
1994; Jain & Mao, 1996). NNs are able to generalize, i.e. to produce reasonable outputs for 
inputs that have not been encountered during learning. They also handle fuzzy, faulty and 
imprecise data adequately. This method is presented by using the example of shot-put flight. 
The objective  of  throwing discipline  models  is  to find the optimal  release parameters for 
achieving a maximal flight distance. A physical model of shot-put flight is designed easily 
based on the shots’ equation of motion. Analysis of actual shot-put action shows that there 
are only very small differences between the result of the physical model and the measured 
data. Therefore, choosing the shot-put task allows verification of the neural network model by 
using the data from the physical model. For more complex tasks, the verification would be 
limited to data measured or generated from other models. In a study by Maier et al. it has 
been shown that artificial neural networks, successfully can be used to model a complex 
problem like javelin flight, with strong non-linearities due to the javelin design and wind influ-
ence (Maier et al.). It has been problematic, verifying the performance for input data ranges 
where no measured data was available. Using existing models that are designed with classic 
methods is also problematic as these too are based on imprecise measurement data and so 
differ significantly from reality in some areas (Hubbard, 1984). 

METHODS: For throwing disciplines, release parameters are normally measured by using 
video analysis. For analysis of shot put flight, relevant parameters are the angle of release α 
and the velocity of release v (Figure 1a). The overall flight distance d is measured as the dis-
tance between the throwing line and the athlete’s hand at the point of release, d0 plus the dis-
tance between the line and the point of touch down of the shot. Data patterns with the result-
ing distances were generated using the physical model for release angles 30°  ≤ α ≤ 55°. 
These were recorded in steps of 1° and the release velocities 9m/s ≤ v ≤ 15m/s were in steps 
of 1m/s. From  these, 100 shot-put attempts were selected at random to serve as ‘measured’ 
data for creating the NN model. Typically, the precision error encountered using video ana-



lysis is for angular data approximately 1° and approximately 0.1 m/s for velocity data. The re-
lease parameters for the selected puts had a random error in the dimension of the precision 
error which was added to generate realistic measurement data. The physical model used a 
fixed release height h0 of 2m. Wind speed and aerodynamics of the shot, etc., were not con-
sidered in the model.
Multi-Layer-Perceptron neural networks (MLPs;  Jain & Mao, 1996) are used to construct a 
model with the release parameters as inputs and the overall distance as output (Figure 1b). 
MLPs are made up of ‘neurons’ that have a number of inputs and generate an output using a 
non-linearity. Neurons in a MLP can be divided in input, output neurons and neurons that are 
neither one nor the other, so called hidden neurons. The whole structure is grouped in layers 
of neurons, i.e. input layer, output layer and a number of hidden layers of neurons that can 
be seen as parallel processing units. The hidden layers enable the MLP to learn complex 
tasks by extracting properties from the input-output patterns. One neuron in a layer is con-
nected with all neurons in the following layer using connections with weights. The input of a 
neuron consists of the outputs of the previous layer, multiplied with each of the connection 
weights. During ‘training’, the weight of the connections is adjusted by means of the Leven-
berg-Marquardt algorithm (LM; Hagan & Menhaj, 1994). LM can be seen as a gradient-des-
cent method, required to find a good weight configuration by minimizing an error cost func-
tion,  with  repeatedly  presenting  input-output  patterns  starting  from  randomly  distributed 
weights. One presentation of the pattern set is called an epoch. Once a MLP is trained, it has 
input data fed into it, and from that, generates an appropriate output (retrieval phase). The 
structure of the MLP, combined with the non-linearity and its weights, adjusted by the training 
algorithm, creates general  function approximations that  allow for  generation of  practically 
every non-linear function. 
An important issue with this method is the ability to generalize: MLPs can be ‘over-trained’ 
easily using LM. The result of this is closely matching outputs for trained data patterns but in 
poor outcome for untrained patterns. To avoid this problem, a form of cross-validation tech-
nique (CV; Stone, 1974), can be used, by choosing good weight configurations during learn-
ing.  The original set of training data is split into three groups: The first group consists of 
training a data set (TDS) with about 75% of the data patterns. The remaining groups are the 
two CV-sets: the validation data set (VDS) with about 20% of the patterns and the remaining 
approximately 5% of the data patterns, to evaluate the performance (EPS) of the MLP. With 
the CV technique, the data patterns of TDS are used for training the MLP with LM. After each 
training epoch the MLP’s performance is tested using the VDS. The weight configuration for 
the best performance reached is stored and only replaced if a better performance has oc-
curred. In this way, the best generalizing weight configuration can be determined. To reduce 
the influence of the randomly selected starting weight configuration, this learning technique is 
repeated a number of times. Finally EPS can be used to evaluate the performance of each 
MLP used and to select the best operating MLP setup of the ones investigated.

Figure  1a -  Release parameters;  1b -  Structure of  the MLP.  Inputs are the release 
parameters,  outputs are the overall  distances d when training and the 
simulated distance nnd when retrieving.



RESULTS: This study experimented with several MLP setups using two hidden layers with 
approximately two and 10 neurons in each layer. A small setup that showed good results 
consisted of two input neurons (matching the number of input data), one output neuron (the 
total flight distance), five neurons in the first and 3 neurons in the second hidden layer. The 
learning algorithm was finally stopped when the summed square error for all TDS dropped 
below 0.1m. The VDS was used to test the generalization performance of the MLP – the 
weight configuration of each MLP setup was saved when the mean differences between the 
predicted distance nnd and the measured distance d was at a minimum. This was repeated 
200 times for each setup in order to reduce the influence of the randomly selected starting 
weights for the minimal search. The final prediction quality was tested on the EPS. The MLP 
setup best suited for the modeling task is the one with the lowest mean error between the 
predicted distance ndd and ‘measured’ distance d. The whole experiment was repeated four 
times with different training sets to ensure reproducibility and all four experiments yielded 
similar results in all repetitions.
Figure 2 shows the distances resulting from the above MLP as function of the release velo-
city and the release angles for the above MLP.
Figure 3 shows the differences between the simulated distances and the distances determ-
ined using the physical model in absolute percentage. The simulated flight distances ndd are 
accurate up to about 2.5 percent. 

Figure 2 - Resulting simulated distances ndd shown as function of release velocity 
and release angle.



Figure 3 - Differences between predicted distances and distances determined by the 
physical model in percent.

CONCLUSION: It was demonstrated by this study, that the neural network based approach 
presented is a suitable instrument for the design of models. In the case of the modeled shot-
put flight, the results are accurate within 2.5% over the whole covered range. The method 
that has been presented here can be used to generate other models for complex and non-lin-
ear problems. It allows implicit physical modeling without describing the explicit physical prin-
ciple. Therefore, it can help to create models rapidly and provides a practical alternative to 
classic bio-mechanic modeling techniques. At times, these have been considered to be too 
demanding with regards to time involved, affected by a shortage of resources or techniques 
that may not be considered viable at all. Once such a model has been created it can also be 
used in training, to assist coaching.
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