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Raw data in biomechanical studies usually require filtering. Depending on the used filter 
there exist some drawbacks as “signal shifted relative to the raw data”, “instability or 
degradation”, “endpoint problem”, “oscillations”. A filter called triple F or F³ based on the 
Fourier transformation is presented that is not crippled by these drawbacks. It consist of a 
transformation of the original data into the frequency spectrum followed by eliminating the 
unwanted frequencies (windowing) and an inverse Fourier transformation back to the 
data as a function of time. This procedure is stable and does not shift the data. It is 
shown how to dampen additional oscillation on the filtered data and how to avoid the 
endpoint problem completely. A comparison with a Butterworth filter and an application 
completes the presentation.  
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INTRODUCTION: When using 3D kinematic data from a digitizing system as input for 
calculations in inverse dynamics, a noisy signal prevents successful computation. Because 
the numerical deviations amplify the noise disproportionately compared with the low 
frequency signal (Winter 1979, pp 29), filtering is unavoidable. One of the most widely used 
digital filters is the Butterworth filter (BWF) (Winter 1979, pp 35). The main reasons for 
choosing the BWF is its short mathematical form, hence its short computation time and 
especially its smooth transfer function. This ensures removing most of the unwanted higher 
frequencies. A comparison with the “moving average” (Haykin 1990, p 73), “FIR low pass” 
(Ifeachor and Jervis 1993, pp 278) and “exponential smoothing” (Hartung, Elpelt et al. 1989, 
pp 672) filters shows the superiority of the BWF. However, the BWF still allows substantial 
portions of higher frequency noise to pass. In addition, the output signal is shifted relative to 
the raw data and data points are lost. Data shifting can be avoided by a second filtering in 
the reverse direction of time. But in this way the filter’s order is doubled, as is the loss of 
data. In addition IIR filters, and the Butterworth is one, can for no apparent reason become 
unstable or degraded (Ifeachor and Jervis 1993, p 375). For the use of three-dimensional 
kinematic data for our simulation system, we need signals which display very few noisy 
artifacts, even in the first and second derivative with respect to time. Furthermore, the filtered 
output should not display a data shift relative to the original raw data. Therefore, we have 
developed a filtering method based on the fast Fourier transformation which we call “Fast 
Fourier Filtering” or simply “triple F (F³)”. 
 
METHOD: F³ consists of five steps. 

1. Extension of the original raw data as an extrapolation of the raw data. 
2. Fast Fourier transformation of the extended raw data. 
3. Windowing of the frequency spectrum by multiplying with a transfer function. 
4. Inverse Fourier transformation back into the coordinate space. 
5. Removing the extended data.  

Step one consists of an extension that does not alter the spectral quality of the raw data. In 
addition, the extension needs to be smooth, and that means the numerical derivative must be 
identical with the raw data. This can be achieved by using the following equations: 
 02i ix x x− = − +  (1.1) 
for the extension before the start of the raw data and 
 2N i N i Nx x+ − x= − +  (1.2) 
for the extension at the end of the data. Here ix  is the original data, with 0x  being the first 
and Nx  the last member of the raw data set. Our data sets contain an average of between 50 
and 2000 data. We extrapolate at least 450 before and 450 after the original data. The 
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extension is done by iterating the equations (1.1) and (1.2) simultaneously and, therefore, the 
ta sets.  
Step two is a fast Fou

extension is never undefined, even for very small da
rier filtering of the 

s

extended data. We use the Sande-
Tukey algorithm (Ramirez 1985), which 
calculates for N  data of a set 2n  
spectral data. Here n  is the smalle t 
natural number for which the relation 

2nN ≤  holds true. For our extended 
ts we always choose the relation 

as 2nN
data se

= . N  is the sum of the original 
raw se plus 900 plus the rest up 
to 2n .  
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Figure 1: Oscillations of the filtered data using a rectangular window 

ould of course be 

 

In step three the frequency spectrum is windowed. The simplest window w
a rectangular window, where all but the desired frequencies are multiplied by zero and the 
rest is left unaltered. But this leads to unwanted oscillations of the retransformed coordinates 
(Figure 1). This is evident for the calculation of a slowly varying spectral function ( )y f . 
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Here ( )x t′  is the filtered signal, sf the sampling frequency, and 1i = − . The damping with 

sethe increa  in time t  is a mere 1 . C  is the cutoff parameter that separates the unaltered 

from the altered data in the spec l function. The rectangular window (transfer function) is 
defined as 
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Here ( )f Cθ ±  is the step function, which is zero for the argument being smaller zero and 
r the arg

 

one fo ument being bigger zero. We have obtained much better results by using a 
cosine window. 
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The cutoff  is defined as C ( ) 1
2H C = . The cosine flank steepness ∆  is half the frequency 

g from oneinterval of ( )f , changin  to zero or vice versa. Again as before, for a slowly 

varying spectral function ( )y f  we get 

H
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The result displays a much better damping – proportional to 3
1
t  – with respect to time.  

Steps four and five are straight forward. Four is the inverse Fourier transformation of the 
extended and windowed raw data. This data set displays an endpoint problem. Step five is 
the simple truncation of added data in front and at the end of the original data set, which 
eliminates both the endpoint problem and removes the extended data.  
 
RESULTS AND DISCUSSION: To compare the well known BWF with our F³ filter we used 
two different data sets. Data set one is rather artificial. It consists of 900 data points at a 
sampling frequency of 50 Hz that contains a superposition of simple sinus oscillations of 15 
different frequencies. Beginning with 0.5 Hz up to 5 Hz, any frequencies in 0.5 Hz steps and 
6, 8, 10, 15 and 20 Hz sinus waves are included. Data set two is from a clinical study. It is 
the vertical component of a head marker of a hemiplegic patient rising from a chair, a so-
called Sit To Stand (STS) movement with a sampling frequency of 50 Hz.  

First we give the results of the two filters to 
remove higher frequency noise. The 
specifications of the second order BWF used 
are as given in Winter (1979, p 36) – with the 
correction of two interchanged minus signs – 
for a cutoff frequency of 2.5 Hz. The absolute 
of the transfer functions is given in Figure 2. 
The specifications of the F³ filter are the 
cutoff frequency 3C Hz=  and a cosine flank 
steepness of 2 Hz∆ = . We should note here 
that the cutoffs for the two filters are defined 
differently. Nonetheless, the transfer 
functions have some similarity, whereby the 
F³ filter removes much more of the higher 

frequencies compared with the BWF, even when we increase the BWF order. This is clearly 
visible in the Fourier spectra of the first example data set, filtered BWF and F³ in comparison 
with the raw data in Figure 3.  
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Figure 2: Norm of the transfer functions 
of Butterworth and F³ filters 
 

However, the comparison of the two filterings for the STS data does not show many 
differences for the coordinates. The velocity, the first derivative with respect to time of the 
filtered data, shows only modest differences. The difference appears for the acceleration 
(Figure 4), the second derivative with respect to time of the filtered data.  
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Figure 3: Relative strength of the Fourier 
spectra for raw data, Butterworth, and F³ 
filtered sets 
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Figure 4: Acceleration of the STS 
movement calculated from coordinates 
filtered using a F³ and a BWF 

Also here the damping of the higher harmonics is best for the F³ filter. A F³ filter, as we use it, 
has two control parameters (cutoff and cosine flank steepness) compared with the two 
parameters of the BWF (cutoff and order). But the control parameter of the F³ gives much 
more freedom to choose the filter’s characteristic in the form of the transfer function. Where 
the BWF even alters the desired low frequencies of the spectrum, the F³ allows those 
frequencies to pass unaltered. The BWF cannot remove the higher frequency parts of the 
spectrum satisfyingly, while the F³ filter can. This is especially important for studies in which it 
is necessary to calculate higher derivatives of kinematic measurements. F³ filtered data do 
not have an endpoint problem (which would cause enormous deviations at the beginning and 
the end of the filtered data set display in comparison with the raw data) and do not show a 
shift relative to the original raw data as well as they do not lose data points. This makes it 
very easy to judge the influence of the filter on the results.  
 
CONCLUSION: We have used the F³ filter successfully for clinical as well as for sports-
related studies using simulation and inverse dynamics. However, it seems that there is no 
reason to restrict the method to the filtering of kinematic data. In the past, when computation 
was expensive and slow, there was a need for short, quick running algorithms, which widely 
excluded Fourier transformations. But with today’s fast and inexpensive PCs this argument is 
no longer valid. With the described method the “endpoint problem” that cripples a simple fast 
Fourier-filtered sequence is eliminated. In conclusion, we would like to comment that there is 
no reason to limit this method to low pass filters. All kinds of filters – low pass, high pass, 
band pass, or even more exotic ones – are in principle easily constructible.  
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